scholarly journals Insights into the phosphoryl transfer catalyzed by cAMP-dependent protein kinase

2014 ◽  
Vol 70 (a1) ◽  
pp. C449-C449
Author(s):  
Oksana Gerlits ◽  
Amit Das ◽  
Jianhui Tian ◽  
Malik Keshwani ◽  
Susan Taylor ◽  
...  

Protein kinases are involved in a number of cell signaling pathways. They catalyze phosphorylation of proteins and regulate the majority of cellular processes (such as growth, differentiation, lipid metabolism, regulation of sugar, nucleic acid synthesis, etc.). Chemically, protein kinases covalently transfer the gamma-phosphate group of a nucleoside triphosphate (e.g. ATP) to a hydroxyl group of a Ser, Thr or Tyr residue of substrate protein or peptide. The reaction involves moving hydrogen atoms between the enzyme, substrate and nucleoside. The unanswered question is whether the proton transfer from the Ser residue happens before the phosphoryl transfer using the general acid-base catalyst, Asp166, or after the reaction went through the transition state by directly protonating the phosphate group. To address this key question about the phosphoryl transfer, we determined a number of X-ray structures of ternary complexes of catalytic subunit of cAMP-dependent protein kinase (PKAc) with various substrates, nucleotides and cofactors. Importantly, we were able to trap and mimic the initial (Michaelis complex) and final (product complex) stages of the reaction. The results demonstrate that Mg2+, Ca2+, Sr2+, and Ba2+ metal ions bind to the active site and facilitate the reaction to produce ADP and a phosphorylated peptide. The study also revealed that metal-free PKAc can facilitate the phosphoryl transfer reaction; a result that was confirmed with single turnover enzyme kinetics measurements. Comparison of the product and the pseudo-Michaelis complex structures, in conjunction with molecular dynamics simulations, reveals conformational, coordination, and hydrogen bonding changes that help further our understanding of the mechanism, roles of metals, and active site residues involved in PKAc activity.

FEBS Letters ◽  
1981 ◽  
Vol 130 (1) ◽  
pp. 127-132 ◽  
Author(s):  
Juan S. Jiménez ◽  
Abraham Kupfer ◽  
Philip Gottlieb ◽  
Shmuel Shaltiel

1985 ◽  
Vol 249 (6) ◽  
pp. H1204-H1210 ◽  
Author(s):  
J. J. Murray ◽  
P. W. Reed ◽  
J. G. Dobson

We have reported that the divalent cation ionophore A23187, like the beta-adrenergic agonist isoproterenol, increased the force of contraction and rate of relaxation and shortened the duration of contraction of papillary muscles isolated from guinea pigs. A23187 produced a fall in resting tension and decreased the contracture tension of K +/- depolarized muscles, as did isoproterenol. In the present studies, isoproterenol produced a concentration-dependent, rapid, and sustained increase in the cyclic AMP (cAMP) content of papillary muscle. In contrast, A23187 had no detectable effect on cAMP levels, even in the presence of the phosphodiesterase inhibitor, papaverine. Neither drug, at concentrations maximal for contractile effects, altered cyclic GMP (cGMP). Isoproterenol increased the cAMP-dependent protein kinase activity ratio, whereas A23187 did not change the activity of this enzyme. However, both A23187 and isoproterenol produced a concentration-dependent increase in phosphorylase activity. Concentrations of A23187 or isoproterenol that enhanced contractility maximally increased the alkali-labile phosphate (by ca. 35%) but were without effect on the acid-labile, alkali-stable phosphate in the total acid precipitable protein. Contractile effects of isoproterenol, which reflect activated Ca2+ uptake, and the increase in phosphorylase activity produced by this agent are believed to be due to an increase in cAMP with subsequent activation of cAMP-dependent protein kinases and phosphorylation of proteins. A23187 may produce similar contractile effects without an increase in cAMP or cAMP-dependent protein kinase activity by activating other protein kinases and/or inhibiting phosphoprotein phosphatases, most likely by its effects on intracellular calcium.


1997 ◽  
Vol 321 (2) ◽  
pp. 333-339 ◽  
Author(s):  
Scott PLUSKEY ◽  
Mohammad MAHROOF-TAHIR ◽  
Debbie C. CRANS ◽  
David S. LAWRENCE

Vanadium oxoions have been shown to elicit a wide range of effects in biological systems, including an increase in the quantity of phosphorylated proteins. This response has been attributed to the inhibition of protein phosphatases, the indirect activation of protein kinases via stimulation of enzymes at early steps in signal transduction pathways and/or the direct activation of protein kinases. We have evaluated the latter possibility by exploring the effects of vanadate, decavanadate and vanadyl cation species on the activity of the cAMP-dependent protein kinase (PKA), a serine/threonine kinase. Vanadate, in the form of monomer, dimer, tetramer and pentamer species, neither inhibits nor activates PKA. In marked contrast, decavanadate is a competitive inhibitor (Ki = 1.8ŷ0.1 mM) of kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly), a peptide-based substrate. This inhibition pattern is especially surprising, since the negatively charged decavanadate would not be predicted to bind to the region of the active site of the enzyme that accommodates the positively charged kemptide substrate. Our studies suggest that decavanadate can associate with kemptide in solution, which would prevent kemptide from interacting with the enzyme. Vanadium(IV) also inhibits the PKA-catalysed phosphorylation of kemptide, but with an IC50 of 366ŷ10 ƁM. However, in this case V4+ appears to bind to the Mg2+-binding site, since it can substitute for Mg2+. In the absence of Mg2+, the optimal concentration of vanadium(IV) for the PKA-catalysed phosphorylation of kemptide is 100 ƁM, with concentrations above 100 ƁM being markedly inhibitory. However, even at the optimal 100 ƁM V4+ concentration, the Vmax and Km values (for kemptide) are significantly less favourable than those obtained in the presence of 100 ƁM Mg2+. In summary, we have found that oxovanadium ions can directly alter the activity of the serine/threonine-specific PKA.


Sign in / Sign up

Export Citation Format

Share Document