Biochemical changes accompanying enhanced cardiac contractility by ionophore A23187

1985 ◽  
Vol 249 (6) ◽  
pp. H1204-H1210 ◽  
Author(s):  
J. J. Murray ◽  
P. W. Reed ◽  
J. G. Dobson

We have reported that the divalent cation ionophore A23187, like the beta-adrenergic agonist isoproterenol, increased the force of contraction and rate of relaxation and shortened the duration of contraction of papillary muscles isolated from guinea pigs. A23187 produced a fall in resting tension and decreased the contracture tension of K +/- depolarized muscles, as did isoproterenol. In the present studies, isoproterenol produced a concentration-dependent, rapid, and sustained increase in the cyclic AMP (cAMP) content of papillary muscle. In contrast, A23187 had no detectable effect on cAMP levels, even in the presence of the phosphodiesterase inhibitor, papaverine. Neither drug, at concentrations maximal for contractile effects, altered cyclic GMP (cGMP). Isoproterenol increased the cAMP-dependent protein kinase activity ratio, whereas A23187 did not change the activity of this enzyme. However, both A23187 and isoproterenol produced a concentration-dependent increase in phosphorylase activity. Concentrations of A23187 or isoproterenol that enhanced contractility maximally increased the alkali-labile phosphate (by ca. 35%) but were without effect on the acid-labile, alkali-stable phosphate in the total acid precipitable protein. Contractile effects of isoproterenol, which reflect activated Ca2+ uptake, and the increase in phosphorylase activity produced by this agent are believed to be due to an increase in cAMP with subsequent activation of cAMP-dependent protein kinases and phosphorylation of proteins. A23187 may produce similar contractile effects without an increase in cAMP or cAMP-dependent protein kinase activity by activating other protein kinases and/or inhibiting phosphoprotein phosphatases, most likely by its effects on intracellular calcium.

1979 ◽  
Vol 236 (1) ◽  
pp. H84-H91
Author(s):  
S. L. Keely ◽  
A. Eiring

The effects of histamine on heart cAMP-dependent protein kinase activity, cAMP levels, phosphorylase activity, and contractile force was investigated in the perfused guinea pig heart. To accurately determine the protein kinase activity ratio in guinea pig heart, it was necessary to measure kinase activity in whole homogenates immediately after homogenization of the tissue. Histamine produced a rapid dose-dependent increase in cAMP and the protein kinase activity ratio followed by increased in contractile force and phosphorylase activity. There was a good correlation between the degree of protein kinase activation and the increase in phosphorylase and force. The beta-adrenergic blocking agent propranolol did not reduce the effects of histamine, but metiamide, a potent H2-receptor antagonist, greatly attenuated all the effects of histamine. The data support the hypothesis that increases in heart cAMP-dependent protein kinase activity produce corresponding increases in contractile force and phosphorylase activity.


1978 ◽  
Vol 234 (5) ◽  
pp. H638-H645 ◽  
Author(s):  
J. G. Dobson

The relationship between cAMP-dependent protein kinase activity and epinephrine-produced activation of phosphorylase and increase in contractility was investigated in the intact working rat heart. Epinephrine was administered as a bolus into the superior vena cava of open-chest preparations and the hearts were rapidly frozen. cAMP increased within 5 s and returned to control within 20-30 s. Protein kinase and phosphorylase kinase activity ratios increased transiently with the same time course as that for cAMP. The phosphorylase activity ratio and the rate of left ventricular pressure development increased maximally within 15 s and returned to control in 30-60 s. Continuous infusion of epinephrine caused a sustained elevation of the protein kinase. Free catalytic protein kinase activity increased proportionately with the dose of epinephrine. The beta-adrenergic blocking agent, practolol, had no effect on the basal levels of the five parameters studied, but did prevent the epinephrine-produced increases. The results suggest that the time course of cAMP-dependent protein kinase activation is appropriate if this enzyme is to play a role in the catecholamine-induced increase in both glycogenolysis and contractility in the in vivo heart.


1986 ◽  
Vol 60 (3) ◽  
pp. 1043-1053 ◽  
Author(s):  
A. D. Jensen ◽  
A. M. Puckett ◽  
G. A. Rinard ◽  
T. J. Torphy ◽  
S. E. Mayer

We studied regional variation in canine trachealis smooth muscle sensitivity and responsiveness to methacholine as well as basal and methacholine-stimulated adenosine 3′,5′-cyclic monophosphate (cAMP) and cAMP-dependent protein kinase activity. The trachea between the cricoid cartilage and the carina was divided into three segments of equal length (designated cervical, middle, and thoracic regions), each consisting of approximately 12–14 cartilage rings. Smooth muscle strips from each of the three regions were exposed to cumulative half-log increments of methacholine chloride. The sensitivity (-log EC50) and responsiveness (force per cross-sectional area and force per milligram protein) of the smooth muscle to methacholine in each region was determined from these data. Smooth muscle strips from cervical and thoracic regions were frozen before and after exposure to cumulative half-log increments of methacholine up to each region's previously determined EC50. Frozen samples were assayed for cAMP content or cAMP-dependent protein kinase activity. The relationship between resting tension and methacholine sensitivity and responsiveness were studied. For the size strips we used, 4 g resting tension set the average cervical and thoracic strips at 96 and 101% of their optimal length, respectively. The methacholine EC50 was not affected by a variation in resting tension. Sensitivity to methacholine was 7.1, 6.8, and 6.5 for cervical, middle, and thoracic regions, respectively. The responsiveness of the cervical and thoracic smooth muscle to methacholine was 16.4 and 16.3 g force/mm2, respectively, at an EC50 methacholine. Basal cAMP was lower in cervical smooth muscle than in thoracic. cAMP-dependent protein kinase activity ratios under both basal and EC50 methacholine-stimulated conditions were lower in cervical smooth muscle than in thoracic. We have observed in trachealis smooth muscle an inverse relationship between methacholine sensitivity and either cAMP or cAMP-dependent protein kinase activity. We suggest that cAMP and cAMP-dependent protein kinase play a role in the regulation of airway smooth muscle sensitivity to cholinergic agonists.


1984 ◽  
Vol 10 (4) ◽  
pp. 433-444 ◽  
Author(s):  
Claude C. Pariset ◽  
Jacqueline S. Weinman ◽  
Francoise T. Escaig ◽  
Michele Y. Guyot ◽  
Francine C. Iftode ◽  
...  

FEBS Letters ◽  
1997 ◽  
Vol 414 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Hideyoshi Higashi ◽  
Kazuki Sato ◽  
Atsuko Ohtake ◽  
Akira Omori ◽  
Sachiyo Yoshida ◽  
...  

1981 ◽  
Vol 240 (4) ◽  
pp. H441-H447
Author(s):  
L. Vittone ◽  
A. Grassi ◽  
L. Chiappe ◽  
M. Argel ◽  
H. E. Cingolani

The relationship between cAMP and relaxation was studied in the isolated rat heart beating at constant rate and perfused at constant coronary flow. After treatment during 1 min with different positive inotropic interventions, cyclic nucleotide levels (cAMP and cGMP) and cAMP-dependent protein kinase activity were determined in heart homogenates. Glucagon, norepinephrine, and isoproterenol increased cAMP from 0.503 +/- 0.025 pmol/mg wet wt to 1.051 +/- 0.099, 0.900 +/- 0.064, and 0.982 +/- 0.138, respectively. Simultaneously glucagon, norepinephrine, and isoproterenol increased cAMP-dependent protein kinase activity ratio from 0.21 +/- 0.02 to 0.45 +/- 0.04, 0.33 +/- 0.02, and 0.34 +/- 0.02, respectively. The ratio between maximal velocities of contraction and relaxation (+T/-T) was significantly decreased by these interventions, whereas time to peak tension (TTP) was shortened by norepinephrine and isoproterenol. High calcium, ouabain, and paired stimulation did not affect cAMP levels, TTP, or +T/-T. A striking correlation was found between cAMP-dependent protein kinase activity and relaxation induces, i.e., TTP, -T, or +T/-T (r = +/- 0.7 to -0.9). Results suggest that inotropic interventions increasing cAMP levels might be primarily affecting intracellular mechanisms causing relaxation.


Sign in / Sign up

Export Citation Format

Share Document