scholarly journals Synthesis, crystal structure and charge-distribution validation of β-Na4Cu(MoO4)3adopting the alluadite structure-type

2016 ◽  
Vol 72 (8) ◽  
pp. 1103-1107 ◽  
Author(s):  
Wassim Dridi ◽  
Mohamed Faouzi Zid

Single crystals of a new variety of tetrasodium copper(II) tris[molybdate(VI)], Na4Cu(MoO4)3, have been synthesized by solid-state reactions and characterized by single-crystal X-ray diffraction. This alluaudite structure-type is characterized by the presence of infinite layers of composition (Cu/Na)2Mo3O14parallel to the (100) plane, which are linked by MoO4tetrahedra, forming a three-dimensional framework containing two types of hexagonal channels in which Na+cations reside. The Cu2+and Na2+cations are located at the same general site with occupancies of 0.5. All atoms are on general positions except for one Mo, two Na (site symmetry 2) and another Na (site symmetry -1) atom. One O atom is split into two separate positions with occupancies of 0.5. The title compound is isotypic with Na5Sc(MoO4)4and Na3In2As3O12. The structure model is supported by bond-valence-sum (BVS) and charge-distribution CHARDI methods. β-Na4Cu(MoO4)3is compared and discussed with the K4Cu(MoO4)3and α-Na4Cu(MoO4)3structures.

2017 ◽  
Vol 73 (11) ◽  
pp. 896-904 ◽  
Author(s):  
Ridha Ben Smail ◽  
Mohamed Faouzi Zid

Since the discovery of electrochemically active LiFePO4, materials with tunnel and layered structures built up of transition metals and polyanions have become the subject of much research. A new quaternary arsenate, sodium calcium trinickel aluminium triarsenate, NaCa1–x Ni3–2x Al2x (AsO4)3 (x = 0.23), was synthesized using the flux method in air at 1023 K and its crystal structure was determined from single-crystal X-ray diffraction (XRD) data. This material was also characterized by qualitative energy-dispersive X-ray spectroscopy (EDS) analysis and IR spectroscopy. The crystal structure belongs to the α-CrPO4 type with the space group Imma. The structure is described as a three-dimensional framework built up of corner-edge-sharing NiO6, (Ni,Al)O6 and AsO4 polyhedra, with channels running along the [100] and [010] directions, in which the sodium and calcium cations are located. The proposed structural model has been validated by bond-valence-sum (BVS) and charge-distribution (CHARDI) tools. The sodium ionic conduction pathways in the anionic framework were investigated by means of the bond-valence site energy (BVSE) model, which predicted that the studied material will probably be a very poor Na+ ion conductor (bond-valence activation energy ∼7 eV).


Author(s):  
Ridha Ben Smail ◽  
Mohamed Faouzi Zid

A new arsenate K1+2xNi1−xFe2(AsO4)3(x= 1/8) {potassium nickel diiron(III) tris[arsenate(V)]} was synthesized using a flux method and its crystal structure was determined from single-crystal X-ray diffraction data. This material was also characterized by qualitative energy dispersive X-ray spectroscopy (EDS) analysis. The crystal structure belongs to the α-CrPO4-structure type, space groupImma. It consists of a three-dimensional-framework built up from FeO6and Ni0.875□1.25O6-octahedra and AsO4-tetrahedra that are sharing corners and/or edges, generating tunnels running along the [010] and [001] directions in which the potassium cations are located. The proposed structural model was validated by bond-valence-sum calculations, charge-distribution (CHARDI) and Madelung energy analyses.


Author(s):  
Manel Sonni ◽  
Riadh Marzouki ◽  
Mohamed Faouzi Zid ◽  
Amira Souilem

The title compound, nonasodium chromium(III) hexakis[molybdate(VI)], β-Na9CrMo6O24, was prepared by solid-state reactions. This alluaudite-type structure is constituted of infinite layers formed by links betweenM2O10(M= C/Na) dimers and MoO4tetrahedra. The Na+and Cr3+cations are located in the same site with, respectively, 0.25 and 0.75 occupancies. The layers are connected to each other through MoO4sharing corners, resulting an in open three-dimensional framework with hexagonal-form cavities occupied by Na+cations. The proposed structural model is supported by charge-distribution (CHARDI) and bond-valence-sum (BVS) analysis. All atoms are on general positions except for one Mo, two Na (site symmetry 2) and another Na site (site symmetry -1). A comparison is made with the similar structures Na4Co(MoO4)3, Na2Ni(MoO4)2, Cu1.35Fe3(PO4)3and NaAgFeMn2(PO4)3.


Author(s):  
Takashi Mochiku ◽  
Yoshitaka Matsushita ◽  
Nikola Subotić ◽  
Takanari Kashiwagi ◽  
Kazuo Kadowaki

RhPb2 (rhodium dilead) is a superconductor crystallizing in the CuAl2 structure type (space group I4/mcm). The Rh and Pb atoms are located at the 4a (site symmetry 422) and 8h (m.2m) sites, respectively. The crystal structure is composed of [RhPb8] antiprisms, which share their square faces along the c axis and the edges in the direction perpendicular to the c axis. We have succeeded in growing single crystals of RhPb2 and have re-determined the crystal structure on basis of single-crystal X-ray diffraction data. In comparison with the previous structure studies using powder X-ray diffraction data [Wallbaum (1943). Z. Metallkd. 35, 218–221; Havinga et al. (1972). J. Less-Common Met. 27, 169–186], the current structure analysis of RhPb2 leads to more precise unit-cell parameters and fractional coordinates, together with anisotropic displacement parameters for the two atoms. In addition and likewise different from the previous studies, we have found a slight deficiency of Rh in RhPb2, leading to a refined formula of Rh0.950 (9)Pb2.


2020 ◽  
Vol 151 (9) ◽  
pp. 1317-1328
Author(s):  
Matthias Weil ◽  
Berthold Stöger

Abstract The caesium phosphates Cs3(H1.5PO4)2(H2O)2 and Cs3(H1.5PO4)2 were obtained from aqueous solutions, and Cs4P2O7(H2O)4 and CsPO3 from solid state reactions, respectively. Cs3(H1.5PO4)2, Cs4P2O7(H2O)4, and CsPO3 were fully structurally characterized for the first time on basis of single-crystal X-ray diffraction data recorded at − 173 °C. Monoclinic Cs3(H1.5PO4)2 (Z = 2, C2/m) represents a new structure type and comprises hydrogen phosphate groups involved in the formation of a strong non-symmetrical hydrogen bond (accompanied by a disordered H atom over a twofold rotation axis) and a very strong symmetric hydrogen bond (with the H atom situated on an inversion centre) with symmetry-related neighbouring anions. Triclinic Cs4P2O7(H2O)4 (Z = 2, P$$\bar{1}$$ 1 ¯ ) crystallizes also in a new structure type and is represented by a diphosphate group with a P–O–P bridging angle of 128.5°. Although H atoms of the water molecules were not modelled, O···O distances point to hydrogen bonds of medium strengths in the crystal structure. CsPO3 is monoclinic (Z = 4, P21/n) and belongs to the family of catena-polyphosphates (MPO3)n with a repetition period of 2. It is isotypic with the room-temperature modification of RbPO3. The crystal structure of Cs3(H1.5PO4)2(H2O)2 was re-evaluated on the basis of single-crystal X-ray diffraction data at − 173 °C, revealing that two adjacent hydrogen phosphate anions are connected by a very strong and non-symmetrical hydrogen bond, in contrast to the previously described symmetrical bonding situation derived from room temperature X-ray diffraction data. In the four title crystal structures, coordination numbers of the caesium cations range from 7 to 12. Graphic abstract


Author(s):  
Ines Fitouri ◽  
Habib Boughzala

Potassium sodium copper(II) diphosphate(V), KNaCuP2O7, was synthesized by solid-state reactions. It crystallizes in the α-Na2CuP2O7 structure type in space group P21/n. In the crystal, CuO5 square-pyramids are linked to nearly eclipsed P2O7 groups by sharing corners to build up corrugated layers with composition [CuP2O7]2− that extend parallel to (010). The K+ and Na+ cations reside in the interlayer space and are connected to nine and seven O atoms, respectively. The structural model was validated by bond-valence-sum (BVS) and charge-distribution (CHARDI) analysis.


2020 ◽  
Vol 76 (8) ◽  
pp. 1369-1372
Author(s):  
Abdessalem Badri ◽  
Inmaculada Alvarez-Serrano ◽  
María Luisa López ◽  
Mongi Ben Amara

Na2.22Mn0.87In1.68(PO4)3, sodium manganese indium tris(phosphate) (2.22/0.87/1.68), was obtained in the form of single crystals by a flux method and was structurally characterized by single-crystal X-ray diffraction. The compound belongs to the alluaudite structure type (space group C2/c) with general formula X(2)X(1)M(1)M(2)2(PO4)3. The X(2) and X(1) sites are partially occupied by sodium [occupancy 0.7676 (17) and 1/2] while the M(1) and M(2) sites are fully occupied within a mixed distribution of sodium/manganese(II) and manganese(II)/indium, respectively. The three-dimensional anionic framework is built up on the basis of M(2)2O10 dimers that share opposite edges with M(1)O6 octahedra, thus forming infinite chains extending parallel to [10\overline{1}]. The linkage between these chains is ensured by PO4 tetrahedra through common vertices. The three-dimensional network thus constructed delimits two types of hexagonal channels, resulting from the catenation of M(2)2O10 dimers, M(1)O6 octahedra and PO4 tetrahedra through edge- and corner-sharing. The channels are occupied by Na+ cations with coordination numbers of seven and eight.


2013 ◽  
Vol 69 (11) ◽  
pp. i80-i80
Author(s):  
Volodymyr Levytskyy ◽  
Volodymyr Babizhetskyy ◽  
Bohdan Kotur ◽  
Volodymyr Smetana

The classification of the title compound, tridysprosium nickel, into the Fe3C (or Al3Ni) structure type has been deduced from powder X-ray diffraction data with lattice parameters reported in a previous study [Lemaire & Paccard (1967).Bull. Soc. Fr. Mineral. Cristallogr.40, 311–315]. The current re-investigation of Dy3Ni based on single-crystal X-ray data revealed atomic positional parameters and anisotropic displacement parameters with high precision. The asymmetric unit consists of two Dy and one Ni atoms. One Dy atom has site symmetry .m. (Wyckoff position 4c) and is surrounded by twelve Dy and three Ni atoms. The other Dy atom (site symmetry 1, 8d) has eleven Dy and three Ni atoms as neighbours, forming a distorted Frank–Kasper polyhedron. The coordination polyhedron of the Ni atom (.m., 4c) is a tricapped trigonal prism formed by nine Dy atoms.


2020 ◽  
Vol 75 (1-2) ◽  
pp. 209-216 ◽  
Author(s):  
Ulrich Schwarz ◽  
Rodrigo Castillo ◽  
Julia M. Hübner ◽  
Aron Wosylus ◽  
Yurii Prots ◽  
...  

AbstractThe binary strontium germanide SrGe6 was synthesized at high-pressure high-temperature conditions of approximately 10 GPa and typically 1400 K before quenching to ambient conditions. At ambient pressure, SrGe6 decomposes in a monotropic fashion at T = 680(10) K into SrGe2 and Ge, indicating its metastable character. Single-crystal X-ray diffraction data indicate that the compound SrGe6 adopts a new monoclinic structure type comprising a unique three-dimensional framework of germanium atoms with unusual cages hosting the strontium cations. Quantum chemical analysis of the chemical bonding shows that the framework consists of three- and four- bonded germanium atoms yielding the precise electron count Sr[(4bGe0]4[(3b)Ge−]2 in accordance with the 8 − N rule and the Zintl concept. Conflicting with that, a pseudo-gap in the electronic density of states appears clearly below the Fermi level, and elaborate bonding analysis reveals additional Sr–Ge interactions in the concave coordination polyhedron of the strontium atoms.


2012 ◽  
Vol 68 (6) ◽  
pp. i50-i50 ◽  
Author(s):  
Luca Bindi ◽  
Alessandro Figini Albisetti ◽  
Giovanni Giunchi ◽  
Luciana Malpezzi ◽  
Norberto Masciocchi

The crystal structure of Mg2B25, dimagnesium pentaeicosaboride, was reexamined from single-crystal X-ray diffraction data. The structural model previously reported on the basis of powder X-ray diffraction data [Giunchi et al. (2006). Solid State Sci. 8, 1202–1208] has been confirmed, although a much higher precision refinement was achieved, leading to much smaller standard uncertainties on bond lengths and refined occupancy factors. Moreover, all atoms were refined with anisotropic displacement parameters. Mg2B25 crystallizes in the β-boron structure type and is isostructural with other rhombohedral compounds of the boron-rich metal boride family. Magnesium atoms are found in interstitial sites on special positions (two with site symmetry .m, one with .2 and one with 3m), all with partial occupancies.


Sign in / Sign up

Export Citation Format

Share Document