scholarly journals Assembly of ZnIIand CdIIcoordination polymers with different dimensionalities based on the semi-flexible 3-(1H-benzimidazol-2-yl)propanoic acid ligand

Author(s):  
Xiao-Yan Li ◽  
Yong-Qiong Peng ◽  
Juan Li ◽  
Wei-Wei Fu ◽  
Yang Liu ◽  
...  

Two new coordination polymers, namely, poly[[μ3-3-(1H-benzimidazol-2-yl)propionato]zinc(II)], [Zn(C10H8N2O2)]n, (1), and poly[bis[μ2-3-(1H-benzimidazol-2-yl)propionato]cadmium(II)], [Cd(C10H8N2O2)2]n, (2) have been synthesized from 3-(1H-benzoimidazol-2-yl)propanoic acid ligands through a mixed-ligand synthetic strategy under a solvothermal environment, and studied by single-crystal X-ray diffraction. Complex1crystallizes in the orthorhombic space groupPbcaand features a two-dimensional structure formed by a binuclear Zn2O4core. Complex2, however, crystallizes in the monoclinic space groupP21/cand forms a one-dimensional chain structure. The ZnIIand CdIIions have different coordination numbers and the 3-(1H-benzoimidazol-2-yl)propanoate ligands display different coordination modes. The structures reported here show the importance of the selection of metal ions and suitable ligands.

1992 ◽  
Vol 47 (3) ◽  
pp. 305-309 ◽  
Author(s):  
Anja Edelmann ◽  
Sally Brooker ◽  
Norbert Bertel ◽  
Mathias Noltemeyer ◽  
Herbert W. Roesky ◽  
...  

Abstract The Molecular Structures of [2,4,6-(CF3)3C6H2S]2 (1) [2,4,6-Me3C6H2Te]2 and [2-Me2N-4,6-(CF3)2C6H2Te]2 (3) have been determined by X-ray diffraction. Crystal data: 1: orthorhombic, space group P212121, Z = 4, a = 822.3(2), b = 1029.2(2), c = 2526.6(5) pm (2343 observed independent reflexions, R = 0.042); 2: orthorhombic, space group Iba 2, Z = 8, a = 1546.5(2), b = 1578.4(2), c = 1483.9(1) pm (2051 observed independent reflexions, R = 0.030); 3: monoclinic, space group P 21/c, Z = 4, a = 1118.7(1), b = 1536.5(2), c = 1492.6(2) pm, β = 98.97(1)° (3033 observed independent reflexions, R = 0.025).


2012 ◽  
Vol 67 (2) ◽  
pp. 127-22
Author(s):  
Anna J. Lehner ◽  
Korina Kraut ◽  
Caroline Röhr

Mixed sulfido/oxidomolybdate anions [MoOxS4−x]2− (x = 1, 2, 3) have been prepared by passing H2S gas through a solution of oxidomolybdates. The alkali salts of K+, Rb+, Cs+, and NH+4 precipitate as crystalline salts from these solutions depending on the pH, the polarity of the solvent, the educt concentrations and the temperature. Their structures have been determined by means of X-ray single-crystal diffraction data. All trisulfidomolybdates A2[MoOS3] (A = NH4/K/Rb/Cs) are isotypic with the tetrasulfido salts, exhibiting the β -K2[SO4] type (orthorhombic, space group Pnma, Z = 4; for A = Rb: a = 940.62(4), b = 713.32(4), c = 1164.56(5) pm, R1 = 0.0281). In contrast, the disulfidomolybdates exhibit a rich crystal chemistry, forming three different structure types depending on the preparation conditions and the size of the A cation: All four cations form salts crystallizing with the (NH4)2[WO2S2] structure type (monoclinic, space group C2/c, Z = 4, for A = Rb: a = 1144.32(11), b = 732.60(4), c = 978.99(10) pm, β = 120.324(7)°, R1 = 0.0274). For the three alkali metal cations a second polymorph with a new structure type (monoclinic, space group P21/c, Z = 4) is observed in addition (for A = Rb: a = 674.83(2), b = 852.98(3), c = 1383.10(9) pm, β = 115.19(1)°, R1 = 0.0216). The cesium salt also crystallizes with a third modification of another new structure type (orthorhombic, space group Pbcn, Z = 4, a = 915.30(6), b = 777.27(7), c = 1120.02(7) pm, R1 = 0.0350). Only for K, an anhydrous monosulfidomolybdate could be obtained (K2[MoO4] structure type, monoclinic, space group C2/m, Z = 4, a = 1288.7(3), b = 615.7(2), c = 762.2(1) pm, β = 109.59(1)°, R1 = 0.0736). The intramolecular chemical bonding in the molybdate anions is discussed and compared with the respective vanadates. Hereby aspects like bond lengths, bond strengths and force constants derived from Raman spectroscopy, are taken into account. Especially for the polymorphic disulfido salts, in-depth analyses of the local coordination numbers and the packing of the ions are presented. The gradual bathochromic shift of the crystal color with increasing S content and increasing size of the counter cations A and molar volumes (for the polymorphic forms), respectively, is in accordance with the increase of the experimental (UV/Vis spectroscopy) and calculated (FP-LAPW band structure theory) band gaps.


1988 ◽  
Vol 41 (3) ◽  
pp. 283 ◽  
Author(s):  
GB Robertson ◽  
PA Tucker

The structures of two crystalline modifications of mer -(Pme2Ph)3H-cis-Cl2IrIII, (1), have been determined from single-crystal X-ray diffraction data. Modification (A) is monoclinic, space group P21/c with a 12.635(1), b 30.605(3), c 14.992(2)Ǻ, β 110.01(2)° and Z = 8. Modification (B) is orthorhombic, space group Pbca with a 27.646(3), b 11.366(1), c 17.252(2)Ǻ and Z = 8. The structures were solved by conventional heavy atom techniques and refined by full-matrix least- squares analyses to conventional R values of 0.037 [(A), 8845 independent reflections] and 0.028 [(B), 5291 independent reflections]. Important bond lengths [Ǻ] are Ir -P(trans to Cl ) 2.249(1) av. (A) and 2.234(1) (B), Ir -P(trans to PMe2Ph) 2.339(2) av. (A) and 2.344(1), 2.352(1) (B), Ir-Cl (trans to H) 2.492(2), 2.518(2) (A) and 2.503(1) (B) and Ir-Cl (trans to PMe2Ph)2.452(2) av. (A) and 2.449(1)(B). Differences in chemically equivalent metal- ligand bond lengths emphasize the importance of non-bonded contacts in determining those lengths.


1996 ◽  
Vol 49 (12) ◽  
pp. 1301 ◽  
Author(s):  
GW Allen ◽  
ECH Ling ◽  
LV Krippner ◽  
TW Hambley

The preparation and purification of [Pt( hpip )Cl2] and [Pd( hpip )Cl2] ( hpip = homopiperazine = 1,4-diazacycloheptane) are described. Crystal structures of [Pt( hpip )Cl2] and [Pd( hpip )Cl2] have been determined by X-ray diffraction methods and refined to R values of 0.023 (932 F) and 0.023 (948 F). The crystals of [Pt( hpip )Cl2] are orthorhombic, space group Pbcm , a 7.7019(8), b 9.8080(12), c 12.1944(14) Ǻ, and those of [Pd( hpip )Cl2] are monoclinic, space group P21/m, a 6.1001(9), b 11.527(2), c 6.458(I) Ǻ, β 106.30(2)°. The seven- membered rings of the ligands in both complexes adopt boat-like conformations in which the five- membered chelate ring has an eclipsed N-C-C-N group and the six- membered chelate ring adopts a chair conformation. Molecular mechanics methods were used to investigate whether this conformation was a crystallographic artefact but it was found to be real. An alternative conformation in which the six-membered chelate ring adopts a skew-boat conformation was also investigated. It was found to be less stable than the conformation observed in the crystal structures, but to a degree that depends on whether non-bonded interactions involving the metal atom were included or not.


1997 ◽  
Vol 52 (5) ◽  
pp. 587-592 ◽  
Author(s):  
Abdel-Fattah Shihada ◽  
Frank Weller

Abstract Ph2Sn(O2PMe2)2 has been synthesized by the reaction of HO2PMe2 with Ph2SnO in toluene or by treating HO2PMe2 with Ph2SnCl2 in methanol. X-ray diffraction studies of Et2Sn(O2PMe2)2 and Ph2Sn(O2PMe2)2 show that the O2PMe2 ligands function as bidentate bridges between the tin atoms. The ethyl and the phenyl groups are in trans-position in the resulting octahedral environment around tin. Et2Sn(O2PMe2)2 crystallizes in the monoclinic space group P21/n (a = 817.11(9), b = 974.1(1), c = 970.1(1) pm, β = 113.749(6)°, Z = 2 and R = 0.032) and con­sists of a polymeric layer structure with centrosymmetric (SnOPO)4 sixteen-membered rings. Ph2Sn(O2PMe2)2 also crystallizes monoclinically in the space group P21/n (a= 1060.9(1), b = 999.4 (1), c = 1768.9(2) pm, β = 90.93(1)°, Z = 4 and R = 0.057) and has a polymeric ring-chain structure with centrosymmetric (SnOPO)2 eight-membered rings. The IR and Raman spectra of Ph2Sn(O2PMe2)2 have been assigned and discussed in the light of structural information. The Sn(O2PMe2)+ ion represents the base peak in the mass spectrum of Ph2Sn(O2Me2)2.


1997 ◽  
Vol 50 (9) ◽  
pp. 903 ◽  
Author(s):  
Trevor W. Hambley ◽  
Walter C. Taylor ◽  
Stephen Toth

Four novel norditerpenoids were isolated from a new encrusting sponge, conveniently labelled Aplysilla pallida. The structures of aplypallidenone (1), aplypallidoxone (2), aplypallidione (3) and aplypallidioxone (4) were elucidated by spectroscopic studies and the crystal structures of aplypallidenone and aplypallidoxone have been determined by X-ray diffraction methods. The structure of (1) was refined to a residual of 0·040 for 1665 independent observed reflections and the structure of (2) was refined to a residual of 0·031 for 1699 independent observed reflections. The crystals of (1) are orthorhombic, space group P212121, a 7·728(2), b 10·838(4), c 24·880(5) Å, Z 4. Those of (2) are monoclinic, space group C 2, a 23·927(7), b 6·674(2), c 14·033(3) Å, Z 4.


Author(s):  
Kamil F. Dziubek ◽  
Andrzej Katrusiak

1,4-Dibromobenzene melts at a considerably higher temperature than the 1,2- and 1,3-isomers. This melting-point difference is consistent with the molecular symmetry, as described by Carnelley's rule, and with the frequency of Br...Br halogen bonds. The lowest melting point of 1,3-dibromobenzene correlates with its two symmetry-independent molecules, indicating their inability to pack closely. Single crystals of 1,2- and 1,3-dibromobenzene have been grown under isochoric conditions in a diamond–anvil cell and at isobaric conditions in a glass capillary. Their structures have been determinedin situby X-ray diffraction. At 295 K 1,2-dibromobenzene crystallizes at 0.2 GPa as orthorhombic, space groupPbca,Z′ = 1, and 1,3-dibromobenzene at 0.3 GPa as orthorhombic, space groupP212121,Z′ = 2. The same crystal phases are formed at ambient pressure by freezing these liquids below 256.15 and 248.45 K, respectively. The third isomer, 1,4-dibromobenzene, is a solid at room temperature and crystallizes as monoclinic, space groupP21/a. Striking relations between the structures and melting points of the corresponding dibromobenzene and dichlorobenzene isomers have been discussed.


1995 ◽  
Vol 73 (9) ◽  
pp. 1520-1525
Author(s):  
Luciano Antolini ◽  
Ugo Folli ◽  
Dario Iarossi ◽  
Adele Mucci ◽  
Silvia Sbardellati ◽  
...  

The crystal structures of the title compounds were determined by single crystal X-ray diffraction techniques. The molecule of the Z isomer, which crystallizes in the monoclinic space group C2/c with Z = 4 in a cell of dimensions a = 14.891 (2), b = 10.780(2), c = 8.769(1) Å, β = 97.47(2)°, V = 1395.7(7) Å3 has crystallographic twofold symmetry. The E form crystallizes in the orthorhombic space group Pbca with a = 11.730(1), b = 6.932(1), c = 16.841(1) Å, V = 1369.4(2) Å3 and Z = 4. Its molecules have crystallographically dictated [Formula: see text] symmetry. In both isomers the phenyl rings are roughly perpendicular to the average ethylene plane. The atoms characterizing this plane show significant deviations from planarity in the Z isomer. Marked bond-angle distortions at the ethene carbons of both structures are observed. The 1H and 13C NMR spectra of the compounds were measured and, particularly in the case of the 1H chemical shifts, fall into two quite separate spectral regions. At low temperature, two conformational isomers, those with different relative orientation of the C—Cl bonds of the phenyl rings, are observed in the spectrum of each compound. Keywords: chlorostilbenes, overcrowded molecules. X-ray structure, conformations, NMR spectroscopy.


1991 ◽  
Vol 46 (4) ◽  
pp. 337-343 ◽  
Author(s):  
Da Zhang ◽  
Shi-Qi Dou ◽  
Alarich Weiss

Abstract The molecular motion in (CH3)3XCl, X = Sn and Pb has been investigated by measurement of the second moment M2(1H) as function of temperature in the range 95 < T,/K<345. The methyl groups in both compounds rotate freely over the whole temperature range studied. In (CH3)3SnCl the C'3-rotation of (CH3)3Sn-group about the Sn CI axis sets in above 273 K. To explain the NMR and INS results, the crystal structures of (CH3)3PbCl and CH3SnBr3 were determined by single X-ray diffraction. (CH3)3PbCl crystallizes in a monoclinic space group C32-C2, a = 1276.7(3) pm, b = 982.3(3) pm, c = 547.0(2) pm, ß = 91.12(1)°; Z = 4, R = 0.035. CH3SnBr3 crystallizes in an orthorhombic space group D162h-Pnma, a = 643.0(3) pm, b= 1005.3(4) pm, c= 1148.0(4) pm; Z = 4, R =0.057


1990 ◽  
Vol 45 (8) ◽  
pp. 1193-1196 ◽  
Author(s):  
Klaus Brodersen ◽  
Axel Knörr

[Hg2(p-SC6H4NO2)]NO3 is formed by the reaction of p-nitrothiophenol with dimercury(I)-dinitrate in methanol. It crystallizes in the monoclinic space group P21/n with a = 1175.5(9) pm, b = 1079.8(8) pm, c = 876.2(8) pm, β = 110.74(4)° and Z = 4. The crystal structure has been determined by X-ray diffraction and refined to an R-value of 0.052. The results show that the compound exists as a chain structure of [—®S(C6H4NO2)— Hg— Hg—]n with nitrate ions connecting the chains.


Sign in / Sign up

Export Citation Format

Share Document