scholarly journals Bis(3-carbamoylpyridin-1-ium) phosphite monohydrate

2018 ◽  
Vol 74 (9) ◽  
pp. 1295-1298
Author(s):  
Jan Fábry

Two of the constituent molecules in the title structure, 2C6H7N2O+·HPO3 2−·H2O, i.e. the phosphite anion and the water molecule, are situated on a symmetry plane. The molecules are held together by moderate N—H...O and O—H...N, and weak O—H...O and C—H...Ocarbonyl hydrogen bonds in which the amide and secondary amine groups, and the water molecules are involved. The structural features are usual, among them the H atom bonded to the P atom avoids hydrogen bonding.

2010 ◽  
Vol 66 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Maxime A. Siegler ◽  
Jacob H. Prewitt ◽  
Steven P. Kelley ◽  
Sean Parkin ◽  
John P. Selegue ◽  
...  

Five structures of co-crystals grown from aqueous solutions equimolar in 15-crown-5 (or 15C5) and [M(H2O)6](NO3) n , M = Al3+, Cr3+ and Pd2+, are reported. The hydrogen-bonding patterns in all are similar: metal complexes including the fragment trans-H2O—M—OH2 alternate with 15C5 molecules, to which they are hydrogen bonded, to form stacks. A literature survey shows that this hydrogen-bonding pattern is very common. In each of the two polymorphs of the compound [Al(H2O)6](NO3)3·15C5·4H2O there are two independent cations; one forms hydrogen bonds directly to the 15C5 molecules adjacent in the stack, while the other cation is hydrogen-bonded to two water molecules that act as spacers in the stack. These stacks are then crosslinked by hydrogen bonds formed by the three nitrate counterions and the three lattice water molecules. The hydrogen-bonded stacks in [Cr(H2O)5(NO3)](NO3)2·1.5(15C5)·H2O are discrete rather than infinite; each unit contains two Cr3+ complex cations and three 15C5 molecules. These units are again crosslinked by the uncoordinated nitrate ions and a lattice water molecule. In [Pd(H2O)2(NO3)2]·15C5 the infinite stacks are electrically neutral and are not crosslinked. In [Pd(H2O)2(NO3)2]·2(15C5)·2H2O·2HNO3 a discrete, uncharged unit containing one Pd complex and two 15C5 molecules is `capped off' at either end by a lattice water molecule and an included nitric acid molecule. In all five structures the infinite stacks or discrete units form an array that is at least approximately hexagonal.


2013 ◽  
Vol 69 (11) ◽  
pp. m570-m571 ◽  
Author(s):  
Kelvin B. Chang ◽  
Matthew D. Smith ◽  
Matthias Zeller ◽  
Alexander J. Norquist

The title compound, {(C6H21N4)[V3O9]·H2O}n, crystallizes as a salt with [trenH3]3+cations [tren is tris(2-aminoethyl)amine], and one-dimensional anionic {[VVO3]−}n(metavanadate) chains along thec-axis direction. Three crystallographically distinct VVsites and one occluded water molecule are present for every [trenH3]3+cation in the unit cell. The {[VVO3]−}nchains are composed of vertex-sharing [VO4] tetrahedra and have a repeat unit of six tetrahedra. Each tetrahedron in the chain contains two terminal and two μ2-bridging oxide ligands. The [trenH3]3+cations, {[VVO3]−}nanions and occluded water molecules participate in an extensive three-dimensonal hydrogen-bonding network. The three terminal ammonium sites of the [trenH3]3+cations each form strong N—H...O hydrogen bonds to terminal oxide ligands on the {[VVO3]−}nchain. Each occluded water molecule also donates two O—H...O hydrogen bonds to the terminal oxide ligands.


IUCrData ◽  
2016 ◽  
Vol 1 (7) ◽  
Author(s):  
Carolin Anderer ◽  
Christian Näther ◽  
Wolfgang Bensch

In the title compound, [Ni(C15H11N3)2](ClO4)2·0.5H2O, the Ni2+cation is coordinated by two terpyridine ligands to form a discrete complex and the coordination polyhedron can be described as a slightly distorted octahedron. It crystallizes as a hemihydrate with two perchlorate anions to compensate the charges. In the crystal, one of the two crystallographically independent perchlorate anions is involved in O—H...O hydrogen bonding to the water molecules, where two inversion-related water molecules link two inversion-related perchlorate anions into a ring with anR42(12) loop. The O-atom position of the water molecule is only half occupied,i.e.only half of the anions are involved in hydrogen bonding. A similar arrangement of two anions is also observed for the second crystallographically independent perchlorate anion but no water molecules are located between the anions. The cationic complex and the perchlorate anions are additionally linked by a number of weak C—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. The crystal structure of the monohydrate of the same complex has been reported [Bakeret al.(1995).Aust. J. Chem.48, 1373–1378].


2012 ◽  
Vol 26 (14) ◽  
pp. 1250088 ◽  
Author(s):  
RUIJIN LIAO ◽  
MENGZHAO ZHU ◽  
XIN ZHOU ◽  
FUZHOU ZHANG ◽  
JIAMING YAN ◽  
...  

Hydrolysis is an important component of the aging of cellulose, and it severely affects the insulating performance of cellulosic materials. The diffusion behavior of water molecules in amorphous cellulose and their destructive effect on the hydrogen bonding structure of cellulose were investigated by molecular dynamics. The change in the hydrogen bonding structure indicates that water molecules have a considerable effect on the hydrogen bonding structure within cellulose: both intermolecular and intramolecular hydrogen bonds decreased with an increase in ingressive water molecules. Moreover, the stabilities of the cellulose molecules were disrupted when the number of intermolecular hydrogen bonds declined to a certain degree. Both the free volumes of amorphous cells and water molecule-cellulose interaction affect the diffusion of water molecules. The latter, especially the hydrogen bonding interaction between water molecules and cellulose, plays a predominant role in the diffusion behavior of water molecules in the models of which the free volume rarely varies. The diffusion coefficient of water molecules has an excellent correlation with water molecule-cellulose interaction and the average hydrogen bonds between each water molecule and cellulose; however, this relationship was not apparent between the diffusion coefficient and free volume.


2012 ◽  
Vol 68 (4) ◽  
pp. o1204-o1204 ◽  
Author(s):  
Sanaz Khorasani ◽  
Manuel A. Fernandes

In the title hydrated salt, C8H18N+·C4H5O4−·H2O, the cyclooctyl ring of the cation is disordered over two positions in a 0.833 (3):0.167 (3) ratio. The structure contains various O—H.·O and N—H...O interactions, forming a hydrogen-bonded layer of molecules perpendicular to thecaxis. In each layer, the ammonium cation hydrogen bonds to two hydrogen succinate anions and one water molecule. Each hydrogen succinate anion hydrogen bonds to neighbouring anions, forming a chain of molecules along thebaxis. In addition, each hydrogen succinate anion hydrogen bonds to two water molecules and the ammonium cation.


2007 ◽  
Vol 63 (3) ◽  
pp. m905-m907 ◽  
Author(s):  
Hazel S. Wilkinson ◽  
William T. A. Harrison

In the title compound, C4H12N2 2+·HAsO4 2−·H2O, the component species interact by way of N—H...O and O—H...O hydrogen bonds, the latter leading to infinite sheets of HAsO4 2− anions and water molecules containing R 6 6(18) loops. The asymmetric unit contains one anion, one water molecule and half each of two centrosymmetric cations.


2014 ◽  
Vol 70 (2) ◽  
pp. m75-m75 ◽  
Author(s):  
Marwa Mghandef ◽  
Habib Boughzala

The asymmetric unit of the title inorganic–organic hybrid compound, (C10H16N2O)[CoCl4]·H2O, consists of a tetrahedral [CoCl4]2−anion, together with a [C10H18N2O]2+cation and a water molecule. Crystal cohesion is achieved through N—H...Cl, O—H...Cl and N—H...O hydrogen bonds between organic cations, inorganic anions and the water molecules, building up a three-dimensional network.


2012 ◽  
Vol 67 (1) ◽  
pp. 5-10
Author(s):  
Guido J. Reiss ◽  
Martin van Megen

The reaction of bipyridine with hydroiodic acid in the presence of iodine gave two new polyiodide-containing salts best described as 4,4´-bipyridinium bis(triiodide), C10H10N2[I3]2, 1, and bis(4,4´-bipyridinium) diiodide bis(triiodide) tris(diiodine) solvate dihydrate, (C10H10N2)2I2[I3]2 · 3 I2 ·2H2O, 2. Both compounds have been structurally characterized by crystallographic and spectroscopic methods (Raman and IR). Compound 1 is composed of I3 − anions forming one-dimensional polymers connected by interionic halogen bonds. These chains run along [101] with one crystallographically independent triiodide anion aligned and the other triiodide anion perpendicular to the chain direction. There are no classical hydrogen bonds present in 1. The structure of 2 consists of a complex I144− anion, 4,4´-bipyridinium dications and hydrogen-bonded water molecules in the ratio of 1 : 2 : 2. The I144− polyiodide anion is best described as an adduct of two iodide and two triiodide anions and three diiodine molecules. Two 4,4´-bipyridinium cations and two water molecules form a cyclic dimer through N-H· · ·O hydrogen bonds. Only weak hydrogen bonding is found between these cyclic dimers and the polyiodide anions.


Author(s):  
Graham Smith ◽  
Urs D. Wermuth

In the structure of the brucinium salt of 4-aminophenylarsonic acid (p-arsanilic acid), systematically 2,3-dimethoxy-10-oxostrychnidinium 4-aminophenylarsonate tetrahydrate, (C23H27N2O4)[As(C6H7N)O2(OH)]·4H2O, the brucinium cations form the characteristic undulating and overlapping head-to-tail layered brucine substructures packed along [010]. The arsanilate anions and the water molecules of solvation are accommodated between the layers and are linked to them through a primary cation N—H...O(anion) hydrogen bond, as well as through water O—H...O hydrogen bonds to brucinium and arsanilate ions as well as bridging water O-atom acceptors, giving an overall three-dimensional network structure.


IUCrData ◽  
2018 ◽  
Vol 3 (8) ◽  
Author(s):  
Błażej Dziuk ◽  
Anna Jezuita

The asymmetric unit of the title compound, C10H9N2 +·0.5C2O4 2−·C2H2O4·H2O, consists of a 2,2′-bipyridinium cation, half an oxalate dianion, one oxalic acid and one water molecule. One N atom in 2,2′-bipyridine is unprotonated, while the second is protonated and forms an N—H...O hydrogen bond. In the crystal, the anions are connected with surrounding acid molecules and water molecules by strong near-linear O—H...O hydrogen bonds. The water molecules are located between the anions and oxalic acids; their O atoms participate as donors and acceptors, respectively, in O—H...O hydrogen bonds, which form sheets arranged parallel to the ac plane.


Sign in / Sign up

Export Citation Format

Share Document