scholarly journals Synthesis and crystal structure of bis[μ-N,N-bis(2-aminoethyl)ethane-1,2-diamine]bis[N,N-bis(2-aminoethyl)ethane-1,2-diamine]-μ4-oxido-hexa-μ3-oxido-octa-μ2-oxido-tetraoxidotetranickel(II)hexatantalum(V) nonadecahydrate

Author(s):  
Dana-Céline Krause ◽  
Christian Näther ◽  
Wolfgang Bensch

Reaction of K8{Ta6O19}·16H2O with [Ni(tren)(H2O)Cl]Cl·H2O in different solvents led to the formation of single crystals of the title compound, [Ni4Ta6O19(C6H18N4)4]·19H2O or {[Ni2(κ4-tren)(μ-κ3-tren)]2Ta6O19}·19H2O (tren is N,N-bis(2-aminoethyl)-1,2-ethanediamine, C6H18N4). In its crystal structure, one Lindqvist-type anion {Ta6O19}8– (point group symmetry \overline{1}) is connected to two NiII cations, with both of them coordinated by one tren ligand into discrete units. Both NiII cations are sixfold coordinated by O atoms of the anion and N atoms of the organic ligand, resulting in slightly distorted [NiON5] octahedra for one and [NiO3N3] octahedra for the other cation. These clusters are linked by intermolecular O—H...O and N—H...O hydrogen bonding involving water molecules into layers parallel to the bc plane. Some of these water molecules are positionally disordered and were refined using a split model. Powder X-ray diffraction revealed that a pure crystalline phase was obtained but that on storage at room-temperature this compound decomposed because of the loss of crystal water molecules.

2017 ◽  
Vol 73 (9) ◽  
pp. 1290-1293
Author(s):  
Stefano H. Byer ◽  
Eric M. Villa

The structure of cerium(IV) bis(phosphite), Ce(HPO3)2, has been solved by single-crystal X-ray diffraction and has trigonal (P-3m1) symmetry. The cerium(IV) cation exhibits site symmetry -3m. and is octahedrally coordinated by O atoms of the phosphite ligands (point group symmetry 3m.). The highly symmetrical compound has a layered structure parallel to theabplane, and is closely related to zirconium(IV) bis(phosphite) solvedviapowder X-ray diffraction with trigonal (P-3 symmetry. Structural details of the two compounds are comparatively discussed.


1988 ◽  
Vol 43 (2) ◽  
pp. 189-195 ◽  
Author(s):  
Walter Frank ◽  
Thomas Stetzer ◽  
Ludwig Heck

The title compound 1 can be obtained from an aqueous solution of aquopentaammine rhodium(III) dithionate and hydroxopentaammine rhodium(III) dithionate. The crystal structure has been determined from single crystal X-ray diffraction data and refined to R = 0.035 for 4390 unique reflections. Crystal data: monoclinic, space group P21/c, a = 1300.9(5) pm. b = 1472.3(6) pm. c = 1478.8(9) pm, β = 106.20(4)°, Z = 4.In the crystal dinuclear rhodium cations with point group symmetry 1 (C1) are found. A central μ-H3O2-bridge is formed by strong hydrogen bonding between aquo and hydroxo ligands; this bridge is additionally coordinated by two molecules of water. The entire bridging system is therefore H7O4-(H3O2- · 2 H2O). O-O distances characterizing the strength of the three hydrogen bonds within this new kind of structural unit are O(H2O-Rh 1)-O(HO-Rh2): 248 pm. O(H2O-Rh 1)-O(H2Oa): 273 pm, O(HO-Rh2)-O(H2Ob): 287 pm. The hydrogen atoms involved in these bridges have been located. The small difference in the Rh 1-O(H2O) - (205.4(3) pm) and Rh2-O(OH)- (204.3(3) pm) distances indicates that the entire H7O4-- moiety serves as a μ-bridging unit between Rh 1 and Rh 2


IUCrData ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Artem V. Malin ◽  
Sergei I. Ivlev ◽  
Roman V. Ostvald ◽  
Florian Kraus

Caesium tetrafluoridobromate(III), CsBrF4, was crystallized in form of small blocks by melting and recrystallization. The crystal structure of CsBrF4 was redetermined from single-crystal X-ray diffraction data. In comparison with a previous study based on powder X-ray diffraction data [Ivlev et al. (2013). Z. Anorg. Allg. Chem. 639, 2846–2850], bond lengths and angles were determined with higher precision, and all atoms were refined with anisotropic displacement parameters. It was confirmed that the structure of CsBrF4 contains two square-planar [BrF4]− anions each with point group symmetry mmm, and a caesium cation (site symmetry mm2) that is coordinated by twelve fluorine atoms, forming an anticuboctahedron. CsBrF4 is isotypic with CsAuF4.


2017 ◽  
Vol 72 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Daniela Vitzthum ◽  
Michael Schauperl ◽  
Klaus R. Liedl ◽  
Hubert Huppertz

AbstractOrthorhombic In3B5O12 was synthesized in a Walker-type multianvil apparatus under high-pressure/high-temperature conditions of 12.2 GPa and 1500°C. Its structure is isotypic to the rare earth analogs RE3B5O12 (RE=Sc, Er–Lu). In the field of indium borate chemistry, In3B5O12 is the third known ternary indium borate besides InBO3 and InB5O9. The crystal structure of In3B5O12 has been determined via single-crystal X-ray diffraction data collected at room temperature. It crystallizes in the orthorhombic space group Pmna with the lattice parameters a=12.570(2), b=4.5141(4), c=12.397(2) Å, and V=703.4(2) Å3. IR and Raman bands of In3B5O12 were theoretically determined and assigned to experimentally recorded spectra.


1992 ◽  
Vol 47 (10) ◽  
pp. 1370-1376 ◽  
Author(s):  
Reinhold Tacke ◽  
Frank Wiesenberger ◽  
Angel Lopez-Mras ◽  
Jörg Sperlich ◽  
Günter Mattern

The zwitterionic λ5-spirosilicates bis[1,2-benzenediolato(2–)][2-(dimethylammonio)-phenyl]silicate (4) and bis [2,3-naphthalenediolato(2–)][2-(dimethylammonio)phenyl]silicate (5; isolated as 5 · ½CH3CN) were synthesized and the crystal structure of 4 was studied by X-ray diffraction. 4 was prepared by reaction of [2-(dimethylamino)phenyl]trimethoxysilane (7) or bis[2-(dimethylamino)phenyl]dimethoxysilane (8) with 1,2-dihydroxybenzene in acetonitrile at room temperature. 5 was synthesized analogously by reaction of 7 or 8 with 2,3-dihydroxynaphthalene. The silanes 7 and 8 were obtained by reaction of tetramethoxysilane (6) with [2-(dimethylamino)phenyl]lithium. The reactions 8 → 4 and 8 → 5 involve a remarkable Si–C cleavage leading to the formation of (dimethylamino)benzene. The pentacoordinate silicon atoms of 4 and 5 are surrounded by four oxygen atoms and one sp2 hybridized carbon atom. The coordination polyhedron of 4 can be described as a distorted square pyramid, the carbon atom being in the apical position (the structure is distorted by 69,1 % from the trigonal bipyramid towards the square pyramid). In the crystal, 4 forms an intramolecular N-H···O hydrogen bond.


2010 ◽  
Vol 65 (10) ◽  
pp. 1206-1212 ◽  
Author(s):  
Almut Haberer ◽  
Reinhard Kaindl ◽  
Hubert Huppertz

The praseodymium orthoborate λ -PrBO3 was synthesized from Pr6O11, B2O3, and PrF3 under high-pressure / high-temperature conditions of 3 GPa and 800 °C in a Walker-type multianvil apparatus. The crystal structure was determined on the basis of single-crystal X-ray diffraction data, collected at room temperature. The title compound crystallizes in the orthorhombic aragonite-type structure, space group Pnma, with the lattice parameters a = 577.1(2), b = 506.7(2), c = 813.3(2) pm, and V = 0.2378(2) nm3, with R1 = 0.0400 and wR2 = 0.0495 (all data). Within the trigonal-planar BO3 groups, the average B-O distance is 137.2 pm. The praseodymium atoms are ninefold coordinated by oxygen atoms.


Author(s):  
Olfa Mtioui-Sghaier ◽  
Rafael Mendoza-Meroño ◽  
Lilia Ktari ◽  
Mohamed Dammak ◽  
Santiago García-Granda

The crystal structure of the β-polymorph of ZnMoO4was re-determined on the basis of single-crystal X-ray diffraction data. In comparison with previous powder X-ray diffraction studies [Katikaneani & Arunachalam (2005).Eur. J. Inorg. Chem. pp. 3080–3087; Cavalcanteet al.(2013).Polyhedron,54, 13–25], all atoms were refined with anisotropic displacement parameters, leading to a higher precision with respect to bond lengths and angles. β-ZnMoO4adopts the wolframite structure type and is composed of distorted ZnO6and MoO6octahedra, both with point group symmetry 2. The distortion of the octahedra is reflected by variation of bond lengths and angles from 2.002 (3)–2.274 (4) Å, 80.63 (11)–108.8 (2)° for equatorial and 158.4 (2)– 162.81 (14)° for axial angles (ZnO6), and of 1.769 (3)–2.171 (3) Å, 73.39 (16)–104.7 (2), 150.8 (2)–164.89 (15)° (MoO6), respectively. In the crystal structure, the same type ofMO6octahedra share edges to built up zigzag chains extending parallel to [001]. The two types of chains are condensed by common vertices into a framework structure. The crystal structure can alternatively be described as derived from a distorted hexagonally closed packed arrangement of the O atoms, with Zn and Mo in half of the octahedral voids.


1996 ◽  
Vol 11 (4) ◽  
pp. 318-320 ◽  
Author(s):  
A. Ratuszna ◽  
S. Juszczyk ◽  
G. Malłecki

The crystal structure of Cr2[Ni(CN)4]3·10H2O has been determined on X-ray diffraction powder data by means of the Rietveld method. The starting model was based on the isomorphic, disordered structure of Mn3[Co(CN)6]2·12H2O. At room temperature the crystal is cubic, F4¯3m, a=10.097(6) Å, V=1029.4(5) Å3. The structure is disordered and contains 1.33 formula weights per unit cell. The Ni and Cr ions are coordinated by N and C atoms, respectively, forming octahedra linked by CN groups. The water molecules replace partly the chromium, carbon, and nitrogen positions in the crystal. The final R values are: Rwp=0.032 (Rexp=0.023), RB=0.088, and DW-Stat.=1.31 (DWexp=1.8).


2014 ◽  
Vol 70 (10) ◽  
pp. 235-237 ◽  
Author(s):  
Peter Held

In the title salt, (C2H10N2)3[Pr2(SO4)6]·6H2O, the PrIIIcation is surrounded ninefold by five sulfate groups (two monodentate and three chelating) and by one water molecule [range of Pr—O bond lengths 2.383 (3) to 2.582 (3) Å]. The [Pr(SO4)5(H2O)] groups are arranged in sheets parallel to (010). Two crystal water molecules and two ethylenediammonium cations (one with point group symmetry -1) connect the sheetsviaO—H...O and N—H...O hydrogen bonds from weak up to medium strength into a three-dimensional framework structure.


Author(s):  
Barbara Lafuente ◽  
Hexiong Yang ◽  
Robert T. Downs

The crystal structure of tetrawickmanite, ideally Mn2+Sn4+(OH)6[manganese(II) tin(IV) hexahydroxide], has been determined based on single-crystal X-ray diffraction data collected from a natural sample from Långban, Sweden. Tetrawickmanite belongs to the octahedral-framework group of hydroxide-perovskite minerals, described by the general formulaBB'(OH)6with a perovskite derivative structure. The structure differs from that of anABO3perovskite in that theAsite is empty while each O atom is bonded to an H atom. The perovskiteB-type cations split into orderedBandB′ sites, which are occupied by Mn2+and Sn4+, respectively. Tetrawickmanite exhibits tetragonal symmetry and is topologically similar to its cubic polymorph, wickmanite. The tetrawickmanite structure is characterized by a framework of alternating corner-linked [Mn2+(OH)6] and [Sn4+(OH)6] octahedra, both with point-group symmetry -1. Four of the five distinct H atoms in the structure are statistically disordered. The vacantAsite is in a cavity in the centre of a distorted cube formed by eight octahedra at the corners. However, the hydrogen-atom positions and their hydrogen bonds are not equivalent in every cavity, resulting in two distinct environments. One of the cavities contains a ring of four hydrogen bonds, similar to that found in wickmanite, while the other cavity is more distorted and forms crankshaft-type chains of hydrogen bonds, as previously proposed for tetragonal stottite, Fe2+Ge4+(OH)6.


Sign in / Sign up

Export Citation Format

Share Document