scholarly journals Synthesis and crystal structure of cerium(IV) bis(phosphite)

2017 ◽  
Vol 73 (9) ◽  
pp. 1290-1293
Author(s):  
Stefano H. Byer ◽  
Eric M. Villa

The structure of cerium(IV) bis(phosphite), Ce(HPO3)2, has been solved by single-crystal X-ray diffraction and has trigonal (P-3m1) symmetry. The cerium(IV) cation exhibits site symmetry -3m. and is octahedrally coordinated by O atoms of the phosphite ligands (point group symmetry 3m.). The highly symmetrical compound has a layered structure parallel to theabplane, and is closely related to zirconium(IV) bis(phosphite) solvedviapowder X-ray diffraction with trigonal (P-3 symmetry. Structural details of the two compounds are comparatively discussed.

IUCrData ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Artem V. Malin ◽  
Sergei I. Ivlev ◽  
Roman V. Ostvald ◽  
Florian Kraus

Caesium tetrafluoridobromate(III), CsBrF4, was crystallized in form of small blocks by melting and recrystallization. The crystal structure of CsBrF4 was redetermined from single-crystal X-ray diffraction data. In comparison with a previous study based on powder X-ray diffraction data [Ivlev et al. (2013). Z. Anorg. Allg. Chem. 639, 2846–2850], bond lengths and angles were determined with higher precision, and all atoms were refined with anisotropic displacement parameters. It was confirmed that the structure of CsBrF4 contains two square-planar [BrF4]− anions each with point group symmetry mmm, and a caesium cation (site symmetry mm2) that is coordinated by twelve fluorine atoms, forming an anticuboctahedron. CsBrF4 is isotypic with CsAuF4.


Author(s):  
Barbara Lafuente ◽  
Hexiong Yang ◽  
Robert T. Downs

The crystal structure of tetrawickmanite, ideally Mn2+Sn4+(OH)6[manganese(II) tin(IV) hexahydroxide], has been determined based on single-crystal X-ray diffraction data collected from a natural sample from Långban, Sweden. Tetrawickmanite belongs to the octahedral-framework group of hydroxide-perovskite minerals, described by the general formulaBB'(OH)6with a perovskite derivative structure. The structure differs from that of anABO3perovskite in that theAsite is empty while each O atom is bonded to an H atom. The perovskiteB-type cations split into orderedBandB′ sites, which are occupied by Mn2+and Sn4+, respectively. Tetrawickmanite exhibits tetragonal symmetry and is topologically similar to its cubic polymorph, wickmanite. The tetrawickmanite structure is characterized by a framework of alternating corner-linked [Mn2+(OH)6] and [Sn4+(OH)6] octahedra, both with point-group symmetry -1. Four of the five distinct H atoms in the structure are statistically disordered. The vacantAsite is in a cavity in the centre of a distorted cube formed by eight octahedra at the corners. However, the hydrogen-atom positions and their hydrogen bonds are not equivalent in every cavity, resulting in two distinct environments. One of the cavities contains a ring of four hydrogen bonds, similar to that found in wickmanite, while the other cavity is more distorted and forms crankshaft-type chains of hydrogen bonds, as previously proposed for tetragonal stottite, Fe2+Ge4+(OH)6.


Author(s):  
Dana-Céline Krause ◽  
Christian Näther ◽  
Wolfgang Bensch

Reaction of K8{Ta6O19}·16H2O with [Ni(tren)(H2O)Cl]Cl·H2O in different solvents led to the formation of single crystals of the title compound, [Ni4Ta6O19(C6H18N4)4]·19H2O or {[Ni2(κ4-tren)(μ-κ3-tren)]2Ta6O19}·19H2O (tren is N,N-bis(2-aminoethyl)-1,2-ethanediamine, C6H18N4). In its crystal structure, one Lindqvist-type anion {Ta6O19}8– (point group symmetry \overline{1}) is connected to two NiII cations, with both of them coordinated by one tren ligand into discrete units. Both NiII cations are sixfold coordinated by O atoms of the anion and N atoms of the organic ligand, resulting in slightly distorted [NiON5] octahedra for one and [NiO3N3] octahedra for the other cation. These clusters are linked by intermolecular O—H...O and N—H...O hydrogen bonding involving water molecules into layers parallel to the bc plane. Some of these water molecules are positionally disordered and were refined using a split model. Powder X-ray diffraction revealed that a pure crystalline phase was obtained but that on storage at room-temperature this compound decomposed because of the loss of crystal water molecules.


Author(s):  
Nataliia Yu. Strutynska ◽  
Marina A. Bondarenko ◽  
Ivan V. Ogorodnyk ◽  
Vyacheslav N. Baumer ◽  
Nikolay S. Slobodyanik

Potassium rubidium cobalt(II)/titanium(IV) tris(orthophosphate), Rb0.743K0.845Co0.293Ti1.707(PO4)3, has been obtained using a high-temperature crystallization method. The obtained compound has a langbeinite-type structure. The three-dimensional framework is built up from mixed-occupied (Co/TiIV)O6octahedra (point group symmetry .3.) and PO4tetrahedra. The K+and Rb+cations are statistically distributed over two distinct sites (both with site symmetry .3.) in the large cavities of the framework. They are surrounded by 12 O atoms.


2015 ◽  
Vol 71 (9) ◽  
pp. 1109-1113
Author(s):  
Akihiko Nakatsuka ◽  
Kazumasa Sugiyama ◽  
Akira Yoneda ◽  
Keiko Fujiwara ◽  
Akira Yoshiasa

Single crystals of the title compound, the post-perovskite-type CaIrO3[calcium iridium(IV) trioxide], have been grown from a CaCl2flux at atmospheric pressure. The crystal structure consists of an alternate stacking of IrO6octahedral layers and CaO8hendecahedral layers along [010]. Chains formed by edge-sharing of IrO6octahedra (point-group symmetry 2/m..) run along [100] and are interconnected along [001] by sharing apical O atoms to build up the IrO6octahedral layers. Chains formed by face-sharing of CaO8hendecahedra (point-group symmetrym2m) run along [100] and are interconnected along [001] by edge-sharing to build up the CaO8hendecahedral layers. The IrO6octahedral layers and CaO8hendecahedral layers are interconnected by sharing edges. The present structure refinement using a high-power X-ray source confirms the atomic positions determined by Hiraiet al.(2009) [Z. Kristallogr.224, 345–350], who had revised our previous report [Sugaharaet al.(2008).Am. Mineral.93, 1148–1152]. However, the displacement ellipsoids of the Ir and Ca atoms based on the present refinement can be approximated as uniaxial ellipsoids elongating along [100], unlike those reported by Hiraiet al.(2009). This suggests that the thermal vibrations of the Ir and Ca atoms are mutually suppressed towards the Ir...Ca direction across the shared edge because of the dominant repulsion between the two atoms.


1988 ◽  
Vol 43 (2) ◽  
pp. 189-195 ◽  
Author(s):  
Walter Frank ◽  
Thomas Stetzer ◽  
Ludwig Heck

The title compound 1 can be obtained from an aqueous solution of aquopentaammine rhodium(III) dithionate and hydroxopentaammine rhodium(III) dithionate. The crystal structure has been determined from single crystal X-ray diffraction data and refined to R = 0.035 for 4390 unique reflections. Crystal data: monoclinic, space group P21/c, a = 1300.9(5) pm. b = 1472.3(6) pm. c = 1478.8(9) pm, β = 106.20(4)°, Z = 4.In the crystal dinuclear rhodium cations with point group symmetry 1 (C1) are found. A central μ-H3O2-bridge is formed by strong hydrogen bonding between aquo and hydroxo ligands; this bridge is additionally coordinated by two molecules of water. The entire bridging system is therefore H7O4-(H3O2- · 2 H2O). O-O distances characterizing the strength of the three hydrogen bonds within this new kind of structural unit are O(H2O-Rh 1)-O(HO-Rh2): 248 pm. O(H2O-Rh 1)-O(H2Oa): 273 pm, O(HO-Rh2)-O(H2Ob): 287 pm. The hydrogen atoms involved in these bridges have been located. The small difference in the Rh 1-O(H2O) - (205.4(3) pm) and Rh2-O(OH)- (204.3(3) pm) distances indicates that the entire H7O4-- moiety serves as a μ-bridging unit between Rh 1 and Rh 2


Author(s):  
Olfa Mtioui-Sghaier ◽  
Rafael Mendoza-Meroño ◽  
Lilia Ktari ◽  
Mohamed Dammak ◽  
Santiago García-Granda

The crystal structure of the β-polymorph of ZnMoO4was re-determined on the basis of single-crystal X-ray diffraction data. In comparison with previous powder X-ray diffraction studies [Katikaneani & Arunachalam (2005).Eur. J. Inorg. Chem. pp. 3080–3087; Cavalcanteet al.(2013).Polyhedron,54, 13–25], all atoms were refined with anisotropic displacement parameters, leading to a higher precision with respect to bond lengths and angles. β-ZnMoO4adopts the wolframite structure type and is composed of distorted ZnO6and MoO6octahedra, both with point group symmetry 2. The distortion of the octahedra is reflected by variation of bond lengths and angles from 2.002 (3)–2.274 (4) Å, 80.63 (11)–108.8 (2)° for equatorial and 158.4 (2)– 162.81 (14)° for axial angles (ZnO6), and of 1.769 (3)–2.171 (3) Å, 73.39 (16)–104.7 (2), 150.8 (2)–164.89 (15)° (MoO6), respectively. In the crystal structure, the same type ofMO6octahedra share edges to built up zigzag chains extending parallel to [001]. The two types of chains are condensed by common vertices into a framework structure. The crystal structure can alternatively be described as derived from a distorted hexagonally closed packed arrangement of the O atoms, with Zn and Mo in half of the octahedral voids.


2018 ◽  
Vol 74 (9) ◽  
pp. 1366-1368
Author(s):  
Hisanori Yamane ◽  
Keita Hiraka

Single crystals of Ti8Bi9O0.25, titanium bismuth oxide (8/9/0.25), were obtained from a sample prepared by heating a mixture of Ti, TiO2 and Bi powders in an Ar atmosphere. Single-crystal X-ray analysis revealed that the introduction of O atoms into the structure of Ti8Bi9 retains the space-group type P4/nmm. The oxygen site is located within a Ti4 tetrahedron (point group symmetry \overline{4}m2) that is vacant in the Ti8Bi9 crystal structure. The occupancy of this site is 0.25 (4), and the O—Ti distance is 1.8824 (11) Å.


Author(s):  
Makoto Kobayashi ◽  
Takuya Yasunaga ◽  
Hideki Kato ◽  
Kotaro Fujii ◽  
Masatomo Yashima ◽  
...  

Single crystals of the solid solution series Ca4+x Y3–x Si7O15+x N5–x were obtained by a solid-state reaction method using a flux for x = 0, 0.5 and 1, resulting in Ca4Y3Si7O15N5 (tetracalcium triyttrium heptasilicon oxynitride), Ca4.5Y2.5Si7O15.5N4.5 and Ca5Y2Si7O16N4 (pentacalcium diyttrium heptasilicon oxynitride). Single-crystal X-ray analysis revealed that the three compounds are isotypic and belong to space-group type P63/m. Ca2+ and Y3+ cations are distributed over two crystallographic sites (site symmetry \overline{3}.. and 1) in a disordered manner. The corresponding (Ca,Y)-centred polyhedra are connected by edge-sharing, resulting in the formation of a layer structure extending parallel to (001). Three [Si(O,N)]4 tetrahedra (two with point group symmetry m.., one with 3.. and half-occupancy) are condensed into an isolated [Si7(O,N)19] unit, in which an [Si(O,N)]4 tetrahedron is located at the center of a 12-membered oxynitride ring with composition [Si6O15N3]. The present compounds are the first to have such an [Si7(O,N)19] unit in their structures.


2002 ◽  
Vol 57 (11) ◽  
pp. 1237-1243 ◽  
Author(s):  
Britta Jächke ◽  
Martin Jansen

Reaction of Me3SiNPCl3 with AlCl3 yields the donor-acceptor complex [Me3SiNPCl3 · AlCl3] (1). Thermal treatment of 1 and simultaneously removing the by-product Me3SiCl results in the formation of [Cl2AlNPCl3]2 (2). Crystallization of 2 from CH2Cl2 yields colorless crystals which have been characterized by single crystal X-ray diffraction analysis (P1̄, a = 719.1(2), b = 843.5(2), c = 857.4(2) pm, α = 64.23(1), β = 76.62(1), γ = 68.21(1)°, Z = 1, R1 = 0.0498). The molecule exhibits site symmetry Ci (point group approximately C2h) and shows as a characteristic feature a planar, almost square Al2N2 four-membered ring with Al-N distances of 187.5(3) and 187.9(3) pm. The phosphorus atoms of the PCl3-groups attached to the nitrogen atoms are almost located in the same plane as defined by the Al2N2-ring. Both new compounds have been characterized by IR, NMR, and MS spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document