scholarly journals Crystal structure of tetrawickmanite, Mn2+Sn4+(OH)6

Author(s):  
Barbara Lafuente ◽  
Hexiong Yang ◽  
Robert T. Downs

The crystal structure of tetrawickmanite, ideally Mn2+Sn4+(OH)6[manganese(II) tin(IV) hexahydroxide], has been determined based on single-crystal X-ray diffraction data collected from a natural sample from Långban, Sweden. Tetrawickmanite belongs to the octahedral-framework group of hydroxide-perovskite minerals, described by the general formulaBB'(OH)6with a perovskite derivative structure. The structure differs from that of anABO3perovskite in that theAsite is empty while each O atom is bonded to an H atom. The perovskiteB-type cations split into orderedBandB′ sites, which are occupied by Mn2+and Sn4+, respectively. Tetrawickmanite exhibits tetragonal symmetry and is topologically similar to its cubic polymorph, wickmanite. The tetrawickmanite structure is characterized by a framework of alternating corner-linked [Mn2+(OH)6] and [Sn4+(OH)6] octahedra, both with point-group symmetry -1. Four of the five distinct H atoms in the structure are statistically disordered. The vacantAsite is in a cavity in the centre of a distorted cube formed by eight octahedra at the corners. However, the hydrogen-atom positions and their hydrogen bonds are not equivalent in every cavity, resulting in two distinct environments. One of the cavities contains a ring of four hydrogen bonds, similar to that found in wickmanite, while the other cavity is more distorted and forms crankshaft-type chains of hydrogen bonds, as previously proposed for tetragonal stottite, Fe2+Ge4+(OH)6.

2017 ◽  
Vol 73 (9) ◽  
pp. 1290-1293
Author(s):  
Stefano H. Byer ◽  
Eric M. Villa

The structure of cerium(IV) bis(phosphite), Ce(HPO3)2, has been solved by single-crystal X-ray diffraction and has trigonal (P-3m1) symmetry. The cerium(IV) cation exhibits site symmetry -3m. and is octahedrally coordinated by O atoms of the phosphite ligands (point group symmetry 3m.). The highly symmetrical compound has a layered structure parallel to theabplane, and is closely related to zirconium(IV) bis(phosphite) solvedviapowder X-ray diffraction with trigonal (P-3 symmetry. Structural details of the two compounds are comparatively discussed.


2015 ◽  
Vol 71 (9) ◽  
pp. 1109-1113
Author(s):  
Akihiko Nakatsuka ◽  
Kazumasa Sugiyama ◽  
Akira Yoneda ◽  
Keiko Fujiwara ◽  
Akira Yoshiasa

Single crystals of the title compound, the post-perovskite-type CaIrO3[calcium iridium(IV) trioxide], have been grown from a CaCl2flux at atmospheric pressure. The crystal structure consists of an alternate stacking of IrO6octahedral layers and CaO8hendecahedral layers along [010]. Chains formed by edge-sharing of IrO6octahedra (point-group symmetry 2/m..) run along [100] and are interconnected along [001] by sharing apical O atoms to build up the IrO6octahedral layers. Chains formed by face-sharing of CaO8hendecahedra (point-group symmetrym2m) run along [100] and are interconnected along [001] by edge-sharing to build up the CaO8hendecahedral layers. The IrO6octahedral layers and CaO8hendecahedral layers are interconnected by sharing edges. The present structure refinement using a high-power X-ray source confirms the atomic positions determined by Hiraiet al.(2009) [Z. Kristallogr.224, 345–350], who had revised our previous report [Sugaharaet al.(2008).Am. Mineral.93, 1148–1152]. However, the displacement ellipsoids of the Ir and Ca atoms based on the present refinement can be approximated as uniaxial ellipsoids elongating along [100], unlike those reported by Hiraiet al.(2009). This suggests that the thermal vibrations of the Ir and Ca atoms are mutually suppressed towards the Ir...Ca direction across the shared edge because of the dominant repulsion between the two atoms.


1988 ◽  
Vol 43 (2) ◽  
pp. 189-195 ◽  
Author(s):  
Walter Frank ◽  
Thomas Stetzer ◽  
Ludwig Heck

The title compound 1 can be obtained from an aqueous solution of aquopentaammine rhodium(III) dithionate and hydroxopentaammine rhodium(III) dithionate. The crystal structure has been determined from single crystal X-ray diffraction data and refined to R = 0.035 for 4390 unique reflections. Crystal data: monoclinic, space group P21/c, a = 1300.9(5) pm. b = 1472.3(6) pm. c = 1478.8(9) pm, β = 106.20(4)°, Z = 4.In the crystal dinuclear rhodium cations with point group symmetry 1 (C1) are found. A central μ-H3O2-bridge is formed by strong hydrogen bonding between aquo and hydroxo ligands; this bridge is additionally coordinated by two molecules of water. The entire bridging system is therefore H7O4-(H3O2- · 2 H2O). O-O distances characterizing the strength of the three hydrogen bonds within this new kind of structural unit are O(H2O-Rh 1)-O(HO-Rh2): 248 pm. O(H2O-Rh 1)-O(H2Oa): 273 pm, O(HO-Rh2)-O(H2Ob): 287 pm. The hydrogen atoms involved in these bridges have been located. The small difference in the Rh 1-O(H2O) - (205.4(3) pm) and Rh2-O(OH)- (204.3(3) pm) distances indicates that the entire H7O4-- moiety serves as a μ-bridging unit between Rh 1 and Rh 2


2015 ◽  
Vol 71 (11) ◽  
pp. 1418-1420 ◽  
Author(s):  
Thomas G. Müller ◽  
Florian Kraus

Hexaamminecobalt(II) bis[tetracarbonylcobaltate(-I)], [Co(NH3)6][Co(CO)4]2, was synthesized by reaction of liquid ammonia with Co2(CO)8. The CoIIatom is coordinated by six ammine ligands. The resulting polyhedron, the hexaamminecobalt(II) cation, exhibits point group symmetry -3. The Co-Iatom is coordinated by four carbonyl ligands, leading to a tetracarbonylcobaltate(−I) anion in the shape of a slightly distorted tetrahedron, with point group symmetry 3. The crystal structure is related to that of high-pressure BaC2(space groupR-3m), with the [Co(NH3)6]2+cations replacing the Ba sites and the [Co(CO)4]−anions replacing the C sites. N—H...O hydrogen bonds between cations and anions stabilize the structural set-up in the title compound.


IUCrData ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Artem V. Malin ◽  
Sergei I. Ivlev ◽  
Roman V. Ostvald ◽  
Florian Kraus

Caesium tetrafluoridobromate(III), CsBrF4, was crystallized in form of small blocks by melting and recrystallization. The crystal structure of CsBrF4 was redetermined from single-crystal X-ray diffraction data. In comparison with a previous study based on powder X-ray diffraction data [Ivlev et al. (2013). Z. Anorg. Allg. Chem. 639, 2846–2850], bond lengths and angles were determined with higher precision, and all atoms were refined with anisotropic displacement parameters. It was confirmed that the structure of CsBrF4 contains two square-planar [BrF4]− anions each with point group symmetry mmm, and a caesium cation (site symmetry mm2) that is coordinated by twelve fluorine atoms, forming an anticuboctahedron. CsBrF4 is isotypic with CsAuF4.


Author(s):  
Bohdan O. Golub ◽  
Sergii I. Shylin ◽  
Sebastian Dechert ◽  
Maria L. Malysheva ◽  
Il`ya A. Gural`skiy

The title salt, [FeII(C4H3ClN2)2(H2O)4](C7H7O3S)2, contains a complex cation with point group symmetry 2/m. The high-spin FeIIcation is hexacoordinated by four symmetry-related water and twoN-bound 2-chloropyrazine molecules in atransarrangement, forming a distorted FeN2O4octahedron. The three-dimensional supramolecular structure is supported by intermolecular O—H...O hydrogen bonds between the complex cations and tosylate anions, and additional π–π interactions between benzene and pyrazine rings. The methyl H atoms of the tosylate anion are equally disordered over two positions.


2014 ◽  
Vol 70 (10) ◽  
pp. 174-177 ◽  
Author(s):  
Peter Frenzel ◽  
Alexander Jakob ◽  
Dieter Schaarschmidt ◽  
Tobias Rüffer ◽  
Heinrich Lang

In the tetranuclear molecule of the title compound, [Ag4(C9H10O4)2(C18H15P)4], the AgIion is coordinated by one P and three O atoms in a considerably distorted tetrahedral environment. The two 2,2-diallylmalonate anions bridge four AgIions in a μ4-(κ6O1,O3:O3:O1′,O3′:O1′) mode, setting up an Ag4O8P4core (point group symmetry -4..) of corner-sharing tetrahedra. The shortest intramolecular Ag...Ag distance of 3.9510 (3) Å reveals that no directd10...d10interactions are present. Four weak intramolecular C—H...O hydrogen bonds are observed in the crystal structure of the title compound, which most likely stabilize the tetranuclear silver core.


2013 ◽  
Vol 69 (2) ◽  
pp. i8-i9 ◽  
Author(s):  
Benjamin N. Schumer ◽  
Robert T. Downs ◽  
Kenneth J. Domanik ◽  
Marcelo B Andrade ◽  
Marcus J. Origlieri

Pirquitasite, ideally Ag2ZnSnS4(disilver zinc tin tetrasulfide), exhibits tetragonal symmetry and is a member of the stannite group that has the general formulaA2BCX4, withA= Ag, Cu;B= Zn, Cd, Fe, Cu, Hg;C= Sn, Ge, Sb, As; andX= S, Se. In this study, single-crystal X-ray diffraction data are used to determine the structure of pirquitasite from a twinned crystal from the type locality, the Pirquitas deposit, Jujuy Province, Argentina, with anisotropic displacement parameters for all atoms, and a measured composition of (Ag1.87Cu0.13)(Zn0.61Fe0.36Cd0.03)SnS4. One Ag atom is located on Wyckoff site Wyckoff 2a(symmetry -4..), the other Ag atom is statistically disordered with minor amounts of Cu and is located on 2c(-4..), the (Zn, Fe, Cd) site on 2d(-4..), Sn on 2b(-4..), and S on general site 8g. This is the first determination of the crystal structure of pirquitasite, and our data indicate that the space group of pirquitasite isI-4, rather thanI-42mas previously suggested. The structure was refined under consideration of twinning by inversion [twin ratio of the components 0.91 (6):0.09 (6)].


Author(s):  
Olfa Mtioui-Sghaier ◽  
Rafael Mendoza-Meroño ◽  
Lilia Ktari ◽  
Mohamed Dammak ◽  
Santiago García-Granda

The crystal structure of the β-polymorph of ZnMoO4was re-determined on the basis of single-crystal X-ray diffraction data. In comparison with previous powder X-ray diffraction studies [Katikaneani & Arunachalam (2005).Eur. J. Inorg. Chem. pp. 3080–3087; Cavalcanteet al.(2013).Polyhedron,54, 13–25], all atoms were refined with anisotropic displacement parameters, leading to a higher precision with respect to bond lengths and angles. β-ZnMoO4adopts the wolframite structure type and is composed of distorted ZnO6and MoO6octahedra, both with point group symmetry 2. The distortion of the octahedra is reflected by variation of bond lengths and angles from 2.002 (3)–2.274 (4) Å, 80.63 (11)–108.8 (2)° for equatorial and 158.4 (2)– 162.81 (14)° for axial angles (ZnO6), and of 1.769 (3)–2.171 (3) Å, 73.39 (16)–104.7 (2), 150.8 (2)–164.89 (15)° (MoO6), respectively. In the crystal structure, the same type ofMO6octahedra share edges to built up zigzag chains extending parallel to [001]. The two types of chains are condensed by common vertices into a framework structure. The crystal structure can alternatively be described as derived from a distorted hexagonally closed packed arrangement of the O atoms, with Zn and Mo in half of the octahedral voids.


2018 ◽  
Vol 74 (9) ◽  
pp. 1366-1368
Author(s):  
Hisanori Yamane ◽  
Keita Hiraka

Single crystals of Ti8Bi9O0.25, titanium bismuth oxide (8/9/0.25), were obtained from a sample prepared by heating a mixture of Ti, TiO2 and Bi powders in an Ar atmosphere. Single-crystal X-ray analysis revealed that the introduction of O atoms into the structure of Ti8Bi9 retains the space-group type P4/nmm. The oxygen site is located within a Ti4 tetrahedron (point group symmetry \overline{4}m2) that is vacant in the Ti8Bi9 crystal structure. The occupancy of this site is 0.25 (4), and the O—Ti distance is 1.8824 (11) Å.


Sign in / Sign up

Export Citation Format

Share Document