scholarly journals Radiation-damage-induced phasing: a case study using UV irradiation with light-emitting diodes

2016 ◽  
Vol 72 (3) ◽  
pp. 395-402 ◽  
Author(s):  
Daniele de Sanctis ◽  
Chloe Zubieta ◽  
Franck Felisaz ◽  
Hugo Caserotto ◽  
Max H. Nanao

Exposure to X-rays, high-intensity visible light or ultraviolet radiation results in alterations to protein structure such as the breakage of disulfide bonds, the loss of electron density at electron-rich centres and the movement of side chains. These specific changes can be exploited in order to obtain phase information. Here, a case study using insulin to illustrate each step of the radiation-damage-induced phasing (RIP) method is presented. Unlike a traditional X-ray-induced damage step, specific damage is introducedviaultraviolet light-emitting diodes (UV-LEDs). In contrast to UV lasers, UV-LEDs have the advantages of small size, low cost and relative ease of use.

2020 ◽  
Vol 19 (8) ◽  
pp. 1009-1021
Author(s):  
Tae-Rin Kwon ◽  
Sung-Eun Lee ◽  
Jong Hwan Kim ◽  
You Na Jang ◽  
Su-Young Kim ◽  
...  

Ultraviolet light-emitting diodes (UV-LEDs) are a novel light source for phototherapy.


Author(s):  
Ting Zhang ◽  
Lin Wang ◽  
Lingmei Kong ◽  
Chengxi Zhang ◽  
Haiyong He ◽  
...  

Metal halide perovskite light-emitting diodes (PeLEDs) have aroused extensive attention due to their high color purity, wide color gamut, low-cost solution processability, showing great potential for application in next-generation high-definition...


Author(s):  
Jianfeng Zhang ◽  
Bin Wei ◽  
Lin Wang ◽  
Xuyong Yang

Metal halide perovskite light-emitting diodes (PeLEDs) have emerged as one of the most promising candidates for next-generation high-resolution displays, due to their wide color gamut, high color purity and low-cost...


2018 ◽  
Vol 83 ◽  
pp. 356-362 ◽  
Author(s):  
Lei Zhang ◽  
Yiting Zheng ◽  
Jiale Mao ◽  
Shuang Wang ◽  
Ruotian Fu ◽  
...  

2021 ◽  
Author(s):  
C. Yuqin Zong ◽  
Cameron Miller

We have developed a new calibration capability for 200 nm to 400 nm ultraviolet light-emitting diodes (UV LEDs) using a Type D gonio-spectroradiometer. The recently-introduced mean differential continuous pulse (M-DCP) method is used to overcome the measurement difficulty associated with the initial forward voltage, VF, anomaly of a UV LED, which makes it impossible to use VF to infer junction temperature, TJ, during pulsed operation. The new measurement facility was validated indirectly by comparing the measured total luminous flux of a white LED with that measured using the NIST’s 2.5 m absolute integrating sphere. The expanded calibration uncertainty for the total radiant flux is approximately 2 % to 3 % (k = 2) depending the wavelength of the UV LED.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Wei Wan ◽  
Zhanxu Chen ◽  
Yongzhu Chen ◽  
Gengyan Chen

The optical output of near-ultraviolet (NUV) light-emitting diodes (LEDs) was improved by including a monolayer of hexagonal close-packed polystyrene (PS) nanospheres. PS nanospheres with different sizes were deposited on the indium tin oxide layer of the NUV LEDs. The electroluminescence results showed that the light extraction efficiency of the NUV LEDs was increased by the inclusion of PS nanospheres, and the maximum optical output enhancement was obtained when the size of the nanospheres was close to the light wavelength. The largest enhancement of the optical output of 1.27-fold was obtained at an injection current of 100 mA. The enhanced optical output was attributed to part of the incident light beyond the critical angle being extracted when the exit surface of the NUV LEDs had a PS nanosphere monolayer. This method may serve as a low-cost and effective approach to raise the efficiency of NUV LEDs.


Sign in / Sign up

Export Citation Format

Share Document