scholarly journals Polar crystal of vanillylformamide through replacement of the alkene by an isosteric formamide group

IUCrData ◽  
2018 ◽  
Vol 3 (12) ◽  
Author(s):  
Pierre Baillargeon ◽  
Tarik Rahem ◽  
Carl Amigo ◽  
Daniel Fortin ◽  
Yves L. Dory

Vanillylformamide [systematic name:N-(4-hydroxy-3-methoxybenzyl)formamide], C9H11NO3, (II), has been synthesized from vanillylamine hydrochloride and studied by single-crystal X-ray diffraction. Compound (II) and the well known biologically active eugenol compound (I) can be considered to be `isosteres' of each other, since they share comparable molecular shape and volume. The product (II) crystallizes in the space groupP1. In the crystal, the vanillylformamide molecules are linked mainly by N—H...O, O—H...O and Csp2—H...O hydrogen bonds, forming infinite two-dimensional polar sheets. These two-dimensional layers pack in a parallel fashion, constructing a polar three-dimensional network. Except for van der Waals forces and weak Csp3—H...O hydrogen bonds, there are no significant intermolecular interactions between the layers. A Cambridge Structural Database search revealed that vanillylamide-related crystals are scarce.

2011 ◽  
Vol 66 (5) ◽  
pp. 459-464 ◽  
Author(s):  
Chao Xu ◽  
Sheng-Bo Liu ◽  
Taike Duan ◽  
Qun Chen ◽  
Qian-Feng Zhang

Two novel cadmium coordination polymers, [Cd(pydc)2(tu)]n (1) and [Cd2(SO4)(nic)2(tu)1.5 - (H2O)2]n (2) (pydc = pyridine-2,3-dicarboxylate, nic = nicotinate, tu = thiourea), have been synthesized under hydrothermal conditions and structurally characterized by X-ray diffraction analysis. 1 is a one-dimensional ladder coordination polymer in a two-dimensional network formed by hydrogen bonds. 2 consists of two kinds of Cd(II) centers in different coordination environments connected via nicotinate and sulfate to form a two-dimensional grid network integrated in a three-dimensional framework generated by hydrogen bonds. 2 shows intense fluorescent emission in the solid state at room temperature


2016 ◽  
Vol 72 (8) ◽  
pp. 1219-1222
Author(s):  
Md. Serajul Haque Faizi ◽  
Musheer Ahmad ◽  
Akram Ali ◽  
Vadim A. Potaskalov

The molecular shape of the title compound, C16H12O7, is bent around the central CH2—O bond. The two benzene rings are almost perpendicular to one another, making a dihedral angle of 87.78 (7)°. In the crystal, each molecule is linked to three others by three pairs of O—H...O hydrogen bonds, forming undulating sheets parallel to thebcplane and enclosingR22(8) ring motifs. The sheets are linked by C—H...O hydrogen bonds and C—H...π interactions, forming a three-dimensional network.


2012 ◽  
Vol 68 (6) ◽  
pp. o1601-o1602 ◽  
Author(s):  
Fadila Berrah ◽  
Sofiane Bouacida ◽  
Hayet Anana ◽  
Thierry Roisnel

The asymmetric unit includes two crystallographically independent equivalents of the title salt, C6H7N2O2 +·ClO4 −. The cations and anions form separate layers alternating along the c axis, which are linked by N—H...O, O—H...O and C—H...O hydrogen bonds into a two-dimensional network parallel to (100). Further C—H...O contacts connect these layers, forming a three-dimensional network, in which R 4 4(20) rings and C 2 2(11) infinite chains can be identified.


IUCrData ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Kai-Long Zhong ◽  
Guo-Qing Cao ◽  
Wei Song ◽  
Chao Ni

In the complex cation of the title salt, [Co(C12H8N2)3](C10H5O8)2·H2O, the CoII cation is situated on a twofold rotation axis and is coordinated in a distorted octahedral manner by six N atoms from three chelating 1,10-phenanthroline (phen) ligands. In the crystal, the non-coordinating 2,4,5-tricarboxybenzoate anions interact with each other via O—H...O hydrogen bonds, generating a two-dimensional network parallel to (100). Adjacent sheets are connected by waterO—H...Ocarboxylate hydrogen bonds, resulting in a three-dimensional network structure that surrounds the complex cations.


2008 ◽  
Vol 63 (2) ◽  
pp. 134-138 ◽  
Author(s):  
Fatih Yilmaz ◽  
Veysel T. Yilmaz ◽  
Haydar Karakaya ◽  
Orhan Büyükgüngör

Two silver 5,5-diethylbarbiturate (barb) complexes with 2,2'-bipyridine (bpy) and 3-(2-pyridyl) propanol (pypr), [Ag(barb)(bpy)] (1) and [Ag(barb)(pypr)] (2), have been prepared and characterized by elemental analysis, IR spectroscopy, thermal analysis, and single crystal X-ray diffraction. Both complexes crystallize in the triclinic space group P1 with Z = 2. The barb ligand in 1 is N-coordinated and the bpy ligand acts as a bichelating ligand leading to an AgN3 tricoordination. Crystals of 1 feature a three-dimensional network based on N-H···O hydrogen bonding, π(bpy)···π(bpy), C-H···π(bpy) and π(bpy)-Ag interactions. In 2, the pypr and barb ligands behave as monodentate ligands through their N atoms, forming a distorted linear AgN2 coordination. Molecules of 2 are doubly bridged by N-H···O hydrogen bonds and further connected via O-H···O hydrogen bonds and aromatic π(pypr)···π(pypr) stacking interactions into a supramolecular network. Both complexes exhibit similar thermal decomposition behavior in air. The first stage corresponds to removal of the co-ligands such as bpy or pypr while the degradation of the barb moiety occurs at higher temperatures to give Ag2O. Like the barb, bpy and pypr ligands, 2 does not show any significant antimicrobial activity, but 1 is active against bacteria and fungi


2020 ◽  
Vol 76 (11) ◽  
pp. 1024-1033
Author(s):  
Fang-Hua Zhao ◽  
Shi-Yao Li ◽  
Wen-Yu Guo ◽  
Zi-Hao Zhao ◽  
Xiao-Wen Guo ◽  
...  

Two new CdII MOFs, namely, two-dimensional (2D) poly[[[μ2-1,4-bis(1H-benzimidazol-1-yl)butane](μ2-heptanedioato)cadmium(II)] tetrahydrate], {[Cd(C7H10O4)(C18H18N4)]·4H2O} n or {[Cd(Pim)(bbimb)]·4H2O} n (1), and 2D poly[diaqua[μ2-1,4-bis(1H-benzimidazol-1-yl)butane](μ4-decanedioato)(μ2-decanedioato)dicadmium(II)], [Cd2(C10H16O4)2(C18H18N4)(H2O)2] n or [Cd(Seb)(bbimb)0.5(H2O)] n (2), have been synthesized hydrothermally based on the 1,4-bis(1H-benzimidazol-1-yl)butane (bbimb) and pimelate (Pim2−, heptanedioate) or sebacate (Seb2−, decanedioate) ligands. Both MOFs were structurally characterized by single-crystal X-ray diffraction. In 1, the CdII centres are connected by bbimb and Pim2− ligands to generate a 2D sql layer structure with an octameric (H2O)8 water cluster. The 2D layers are further connected by O—H...O hydrogen bonds, resulting in a three-dimensional (3D) supramolecular structure. In 2, the CdII centres are coordinated by Seb2− ligands to form binuclear Cd2 units which are linked by bbimb and Seb2− ligands into a 2D hxl layer. The 2D layers are further connected by O—H...O hydrogen bonds, leading to an 8-connected 3D hex supramolecular network. IR and UV–Vis spectroscopy, thermogravimetric analysis and solid-state photoluminescence analysis were carried out on both MOFs. Luminescence sensing experiments reveal that both MOFs have good selective sensing towards Fe3+ in aqueous solution.


Author(s):  
Mwaffak Rukiah ◽  
Thaer Assaad

The title two-dimensional coordination polymer, [Na(C2H8NO6P2)]n, was characterized using powder X-ray diffraction data and its structure refined using the Rietveld method. The asymmetric unit contains one Na+cation and one (1-azaniumylethane-1,1-diyl)bis(hydrogen phosphonate) anion. The central Na+cation exhibits distorted octahedral coordination geometry involving two deprotonated O atoms, two hydroxy O atoms and two double-bonded O atoms of the bisphosphonate anion. Pairs of sodium-centred octahedra share edges and the pairs are in turn connected to each other by the biphosphonate anion to form a two-dimensional network parallel to the (001) plane. The polymeric layers are connected by strong O—H...O hydrogen bonding between the hydroxy group and one of the free O atoms of the bisphosphonate anion to generate a three-dimensional network. Further stabilization of the crystal structure is achived by N—H...O and O—H...O hydrogen bonding.<!?tpb=18.7pt>


2006 ◽  
Vol 62 (7) ◽  
pp. m1479-m1481 ◽  
Author(s):  
Yu-Hong Ma ◽  
Pi-Zhuang Ma ◽  
Huan-Qin Zhu ◽  
Chang-Cheng Liu

The title complex, [Co(C2N3)2(C7H6N4)2(H2O)2] or [Co(dca)2(pytrz)2(H2O)2], where pytrz is 4-(2-pyridyl)-4H-1,2,4-triazole and dca is the dicyanamide monoanion, was prepared using pytrz, Na(dca) and CoCl2·6H2O. The CoII atom lies on a center of inversion and is coordinated in a slightly distorted octahderal geometry by two pytrz ligands, two dca ligands and two trans-oriented water molecules. In the crystal structure, complex molecules are linked by O—H...N hydrogen bonds into a two-dimensional network and further into a three-dimensional network via weak C—H...N hydrogen bonds.


2010 ◽  
Vol 65 (12) ◽  
pp. 1462-1466 ◽  
Author(s):  
Michaela K. Meyer ◽  
Jürgen Graf ◽  
Guido J. Reiß

[Me(HO)2P-(CH2)10-P(O)OHMe]2[I3]2・MeHO(O)P-(CH2)10-P(O)OHMe (1) was synthesized and characterized by IR, Raman and NMR spectroscopy. Its structure was determined by singlecrystal X-ray diffraction (T = 100 K; space group P1̄). The structure consists of decane-1,10-diyl-bis- (methylphosphinic acid) molecules and the analogous mono-protonated cations in a ratio 1:2 connected with each other by strong O-H···O hydrogen bonds to form a two-dimensional network. Between these hydrogen-bonded layers, there are elongated cavities each containing two triiodide anions. The intermolecular I· · · I distance of the two enclosed triiodide anions is 3.6317(4) Å and should be considered as an interhalogen bonding interaction.


2016 ◽  
Vol 72 (4) ◽  
pp. 285-290 ◽  
Author(s):  
Xiang-Wen Wu ◽  
Shi Yin ◽  
Wan-Fu Wu ◽  
Jian-Ping Ma

Bimetallic macrocyclic complexes have attracted the attention of chemists and various organic ligands have been used as molecular building blocks, but supramolecular complexes based on semi-rigid organic ligands containing 1,2,4-triazole have remained rare until recently. It is easier to obtain novel topologies by making use of asymmetric semi-rigid ligands in the self-assembly process than by making use of rigid ligands. A new semi-rigid ligand, 3-[(pyridin-4-ylmethyl)sulfanyl]-5-(quinolin-2-yl)-4H-1,2,4-triazol-4-amine (L), has been synthesized and used to generate two novel bimetallic macrocycle complexes, namely bis{μ-3-[(pyridin-4-ylmethyl)sulfanyl]-5-(quinolin-2-yl)-4H-1,2,4-triazol-4-amine}bis[(methanol-κO)(nitrato-κ2O,O′)nickel(II)] dinitrate, [Ni2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (I), and bis{μ-3-[(pyridin-4-ylmethyl)sulfanyl]-5-(quinolin-2-yl)-4H-1,2,4-triazol-4-amine}bis[(methanol-κO)(nitrato-κ2O,O′)zinc(II)] dinitrate, [Zn2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (II), by solution reactions with the inorganic saltsM(NO3)2(M= Ni and Zn, respectively) in mixed solvents. In (I), two NiIIcations with the same coordination environment are linked byLligands through Ni—N bonds to form a bimetallic ring. Compound (I) is extended into a two-dimensional network in the crystallographicacplaneviaN—H...O, O—H...N and O—H...O hydrogen bonds, and neighbouring two-dimensional planes are parallel and form a three-dimensional structureviaπ–π stacking. Compound (II) contains two bimetallic rings with the same coordination environment of the ZnIIcations. The ZnIIcations are bridged byLligands through Zn—N bonds to form the bimetallic rings. One type of bimetallic ring constructs a one-dimensional nanotubeviaO—H...O and N—H...O hydrogen bonds along the crystallographicadirection, and the other constructs zero-dimensional molecular cagesviaO—H...O and N—H...O hydrogen bonds. They are interlinked into a two-dimensional network in theacplane through extensive N—H...O hydrogen bonds, and a three-dimensional supramolecular architecture is formedviaπ–π interactions between the centroids of the benzene rings of the quinoline ring systems.


Sign in / Sign up

Export Citation Format

Share Document