Synthesis and anti-corrosion performance of C21H25NO on corrosion of N80 steel in hydrochloric acid solution

2019 ◽  
Vol 66 (5) ◽  
pp. 573-582
Author(s):  
Yanhua Zhu ◽  
Liqiang Zhao ◽  
Pingli Liu ◽  
Xiao Qu

Purpose In this work, a kind of Mannich base (C21H25NO) was synthesized with cinnamal aldehyde, acetophenone and diethylamine in a condensing reflux device based on the conventional method. Optimization of the inhibitor concentration was explored. Design/methodology/approach Spectral properties of this compound was investigated by FTIR, and its inhibition efficiency and mechanism on N80 steel in 20% hydrochloric acid solution were studied by weight loss measurement, electrochemical measurement (potentiodynamic polarization and electrochemical impedance spectroscopy) and surface analytical measurement (scanning electron microscope with energy dispersive spectrometer). Findings The results showed that the new inhibitor reduced the double-layer capacitance and increased the charge transfer resistance. The inhibition efficiency is 99.7% when the concentration of C21H25NO is 3%. The adsorption of C21H25NO on N80 steel surface in 20% HCl solution was found to be spontaneous and steady. Observed from the steel surface, an inhibition film was confirmed to be presented after adding inhibitor and successfully hindered the corrosive ions from reaching the bulk steel. Originality/value A new Mannich base (C21H25NO) was synthesized by cinnamal aldehyde, acetophenone and diethylamine for the corrosion prevention of N80 steel in 20% hydrochloric acid solution.

2018 ◽  
Vol 786 ◽  
pp. 134-148 ◽  
Author(s):  
Rania Assem ◽  
A.S. Fouda ◽  
A.A. Ibrahim ◽  
M. Saadawy

The corrosion inhibition effect of some anionic surfactants (Diisononyl phthalate (A), N-oleyl-1, 3-propane –diamine (B), and Sodium lauryl sulphate (C)) on the corrosion of carbon steel in 1M hydrochloric acid solution were studied by chemical method (weight loss) and electrochemical methods (potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). From the results, it was clear that these surfactants are good inhibitors for corrosion of carbon steel in 1M HCl solution. Their inhibition depends mainly on their concentrations and temperature of solution. Polarization data revealed that these surfactants act as mixed type inhibitors. The surfactants adsorptions were found to follow Langmuir’s adsorption isotherm. The thermodynamic parameters of activation and adsorption were calculated and discussed. Adsorption of used surfactants led to a reduction in the double layer capacitance (Cdl) and an increase in the charge transfer resistance (Rct). All measurements used confirmed the adsorption of the surfactants used on carbon steel surface. Confirmation of these various independent techniques proved validity of the obtained data.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Preethi Kumari ◽  
Prakash Shetty ◽  
Suma A. Rao

The inhibition performance and adsorption behaviour of 4-hydroxy-N′-[(E)-(1H-indole-2-ylmethylidene)] benzohydrazide (HIBH) on mild steel in 1 M HCl solution were tested by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The inhibition efficiency of HIBH increases with increase in inhibitor concentration in the temperature range 30–60°C. Polarisation curves indicate that HIBH is a mixed inhibitor, affecting both cathodic and anodic corrosion currents. The adsorption process of HIBH at the mild steel/hydrochloric acid solution interface obeyed Langmuir adsorption isotherm model and inhibition takes place by mixed adsorption, predominantly chemisorption. The activation and thermodynamic parameters for the corrosion inhibition process were calculated to elaborate the mechanism of corrosion inhibition.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
K. S. Shaju ◽  
K. Joby Thomas ◽  
Vinod P. Raphael ◽  
Aby Paul

The corrosion inhibition efficiency of a potential polynuclear Schiff base, (s)-2-(anthracene-9 (10H)-ylidene amino)-5-guanidinopentanoic acid (A9Y5GPA), on carbon steel (CS) in 1 M hydrochloric acid solution has been investigated using weight loss measurements, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization studies. The corrosion inhibition efficiencies of parent amine [(s)-2-amino-5-guanidinopentanoic acid] and parent ketone (anthracene-9 (10H)-one) on carbon steel in 1.0 M hydrochloric acid solution have also been investigated using weight loss studies. The electrochemical and weight loss data established that the inhibition efficiency on CS increases with the increase in the concentration of inhibitor, A9Y5GPA. The adsorption of A9Y5GPA obeys the Langmuir adsorption isotherm. Thermodynamic parameters (Kads, ΔGads0) were calculated using the adsorption isotherm. Activation parameters of the corrosion process (Ea, ΔH* and ΔS*) were also calculated from the corrosion rates obtained from temperature studies. Tafel plot analysis revealed that A9Y5GPA acts as a mixed-type inhibitor. A probable inhibition mechanism was also proposed. Surface morphology of the carbon steel specimens in the presence and absence of the inhibitor was evaluated by SEM analysis.


2014 ◽  
Vol 61 (5) ◽  
pp. 300-306 ◽  
Author(s):  
B.P. Markhali ◽  
R. Naderi ◽  
M. Sayebani ◽  
M. Mahdavian

Purpose – The purpose of this paper is investigate the inhibition efficiency of three similar bi-cyclic organic compounds, namely, benzimidazole (BI), benzotriazole (BTAH) and benzothiazole (BTH) on carbon steel in 1 M hydrochloric acid (HCl) solution. Organic inhibitors are widely used to protect metals in acidic media. Among abundant suggestions for acid corrosion inhibitors, azole compounds have gained attention. Design/methodology/approach – The inhibition efficiency of the three organic compounds was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Findings – Superiorities of BTH and BTAH corrosion inhibitors were shown by EIS data and polarization curves. Moreover, the results revealed that BTAH and BTH can function as effective mixed-type adsorptive inhibitors, whereas no inhibition behavior was observed for BI. Both BTAH and BTH obeyed Longmuir adsorption isotherm. The results obtained from this isotherm showed that both inhibitors adsorbed on the specimen surface physically and chemically. The difference in inhibition efficiencies of BTAH, BTH and BI was related to the presence of nitrogen and sulfur hetero atoms on their molecular structures. Originality/value – This study evaluated inhibition efficiency of BI, BTAH and BTH using electrochemical methods. In addition, the study attempted to find inhibition mechanism of the inhibitors and to find modes of adsorption of the inhibitors, correlating effects of heteroatoms and inhibition efficiency.


2015 ◽  
Vol 44 (6) ◽  
pp. 371-378 ◽  
Author(s):  
Y. Sangeetha ◽  
S. Meenakshi ◽  
C. Sairam Sundaram

Purpose – The purpose of this paper is to develop an eco-friendly corrosion inhibitor for mild steel in 1 M HCl. Design/methodology/approach – A pharmaceutical drug acetyl G was investigated for its corrosion inhibition efficiency using weight loss method, potentiodynamic polarisation and electrochemical impedance spectroscopy. Findings – The inhibition efficiency increased with increase in inhibitor concentration. Results from polarisation studies revealed mixed type of inhibition. Impedance studies, scanning electron microscopy and Fourier transform spectroscopy confirm the adsorption of inhibitor on the mild steel surface. Research limitations/implications – The drug acetyl G has sulphur and nitrogen atoms which effectively block the corrosion of mild steel and is non-toxic and has good inhibition efficiency. Practical implications – This method provides an excellent, non-toxic and cost-effective material as a corrosion inhibitor for mild steel in acid medium. Originality/value – Application of this drug as a corrosion inhibitor has not been reported yet in the literature. Replacing the organic inhibitors, this green inhibitor shows excellent inhibition efficiency. This is adsorbed excellently on the mild steel surface due to the presence of long chain and hetero atoms. Thus, the drug retards the corrosion reaction.


2016 ◽  
Vol 63 (4) ◽  
pp. 275-280
Author(s):  
Yao Ding ◽  
Zhengtang Luo ◽  
Dong Liu

Purpose The purpose of this paper is to use Dextrofosfomysin levophenethylamine salt to prepare HEHSPN-(Na)2 (HSPN), a new corrosion inhibitor containing sulfur. Design/methodology/approach The inhibition efficiency for Q235 steel in hydrochloric acid has been evaluated by weight-loss test, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Surface studies were performed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Findings The results show that inhibition efficiency of HSPN increases with an increase in concentration. Adsorption conforms to Flory–Huggins uniform temperature equation, which is multi-molecular layer adsorption and belongs to physical adsorption. Originality/value This paper is intended to be added to the family of papers that deal with green corrosion inhibitors which are highly efficient and can be used in the area of corrosion prevention and control.


2012 ◽  
Vol 212-213 ◽  
pp. 947-950
Author(s):  
Tao Wang ◽  
Xi Yang He ◽  
Xue Yang

The weight loss measurements and potentiodynamic polarization techniques are used to assess the inhibitive and adsorption behaviour of 2-Benzothiazolethiol (BTT) for Q235 steel in hydrochloric acid solution. The inhibition efficiency is found to increase with increase in BTT concentration but decrease with rise in temperature and hydrochloric acid concentration. The results show that BTT acts as a good corrosion inhibitor in hydrochloric acid solution. Adsorption of BTT is found to obey Langmuir isotherm. Polarization curves indicate BTT is a mixed-type inhibitor.


Sign in / Sign up

Export Citation Format

Share Document