Corrosion inhibition of some azole derivatives on carbon steel in hydrochloric acid solution

2014 ◽  
Vol 61 (5) ◽  
pp. 300-306 ◽  
Author(s):  
B.P. Markhali ◽  
R. Naderi ◽  
M. Sayebani ◽  
M. Mahdavian

Purpose – The purpose of this paper is investigate the inhibition efficiency of three similar bi-cyclic organic compounds, namely, benzimidazole (BI), benzotriazole (BTAH) and benzothiazole (BTH) on carbon steel in 1 M hydrochloric acid (HCl) solution. Organic inhibitors are widely used to protect metals in acidic media. Among abundant suggestions for acid corrosion inhibitors, azole compounds have gained attention. Design/methodology/approach – The inhibition efficiency of the three organic compounds was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Findings – Superiorities of BTH and BTAH corrosion inhibitors were shown by EIS data and polarization curves. Moreover, the results revealed that BTAH and BTH can function as effective mixed-type adsorptive inhibitors, whereas no inhibition behavior was observed for BI. Both BTAH and BTH obeyed Longmuir adsorption isotherm. The results obtained from this isotherm showed that both inhibitors adsorbed on the specimen surface physically and chemically. The difference in inhibition efficiencies of BTAH, BTH and BI was related to the presence of nitrogen and sulfur hetero atoms on their molecular structures. Originality/value – This study evaluated inhibition efficiency of BI, BTAH and BTH using electrochemical methods. In addition, the study attempted to find inhibition mechanism of the inhibitors and to find modes of adsorption of the inhibitors, correlating effects of heteroatoms and inhibition efficiency.

2019 ◽  
Vol 66 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Walid Belmaghraoui ◽  
Aimad Mazkour ◽  
Hicham Harhar ◽  
Mourad Harir ◽  
Souad El Hajjaji

Purpose This study aims to investigate the corrosion inhibition effect of extracted oil from Ziziphus lotus fruit on corrosion of C38 carbon steel in 5.5 M H3PO4 solution using potentiodynamic polarization and impedance techniques. Design/methodology/approach Oil composition was determined using gas chromatography, and the results showed that oleic and palmitic acids present approximately 84.0 per cent of its total chemical content. Electrochemical impedance spectroscopy (EIS) data were analyzed by adapting it to a well-developed electric circuit model. The inhibition efficiency of Z. lotus oil was calculated and compared using Tafel polarization and EIS. Findings Accordingly, the oil extract was found to act as an anodic type inhibitor. Furthermore, inhibition efficiency of Z. lotus oil extract increase with oil concentrations and achieve approximately 70.5 per cent at 3 g/L solution of Z. lotus oil. Originality/value The results obtained from different tested methods were in line, and the oil was able to reduce significantly the kinetics of the corrosion process of C38 carbon steel.


2019 ◽  
Vol 66 (6) ◽  
pp. 835-852 ◽  
Author(s):  
Aziz Boutouil ◽  
My Rachid Laamari ◽  
Ilham Elazhary ◽  
Hafid Anane ◽  
Abdeslem Ben Tama ◽  
...  

Purpose This study aims to investigate the inhibition effect of a newly synthesized1,2,3-triazole containing a carbohydrate and imidazole substituents, namely, 1-((1-((2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4′,5′-d]pyran-5-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl)-1H-benzo[d]imidazole (TTB) on the corrosion of mild steel in aerated 1 M H2SO4. Design/methodology/approach The authors have used weight loss measurement, potentiodynamic polarization, electrochemical impedance spectroscopy, FT-IR studies, scanning electron microscopy analysis and energy dispersive X-ray (EDX) spectroscopy techniques. Findings It is found that, in the working range of 298-328 K, the inhibition efficiency of TTB increases with increasing concentration to attain the highest value (92 per cent) at 2.5 × 10−3 M. Both chemisorption and physisorption of TTB take place on the mild steel, resulting in the formation of an inhibiting film. Computational methods point to the imidazole and phenyl ring as the main structural parts responsible of adsorption by electron-donating to the steel surface, while the triazol ring is responsible for the electron accepting. Such strong donating–accepting interactions lead to higher inhibition efficiency of TTB in the aqueous working system. Originality/value This work is original with the aim of finding new acid corrosion inhibitors.


2018 ◽  
Vol 65 (6) ◽  
pp. 658-667 ◽  
Author(s):  
Yingjun Zhang ◽  
Baojie Dou ◽  
Yawei Shao ◽  
Xue-Jun Cui ◽  
Yanqiu Wang ◽  
...  

Purpose This paper aim to investigate the influence of PA on the corrosion behavior of carbon steel with blast cleaned or pre-rusted treatments, and interpret the inhibition mechanism of PA on the steel with different surface treatments. Design/methodology/approach The influence of PA on the corrosion behavior of blast cleaned or rusty steel was investigated by means of electrochemical impedance spectroscopy (EIS). The EIS data were analyzed using the @ZsimpWin commercial software. The morphology and component of steel after immersion were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), Fourier transformation infrared (FTIR) and X-ray diffractometer (XRD). Findings EIS analysis results indicated that PA had good corrosion inhibition for blast cleaned or rusty steel. SEM, EDS, FTIR and XRD further indicated that PA had two main corrosion inhibition processes for the corrosion inhibition of blast cleaned or rusty steel: corrosion dissolution and formation of protective barrier layers. Originality/value Most published works focus the attention only toward the effect of corrosion inhibitor for the clean metal surfaces. However, the surface condition of metal sometimes is unsatisfactory in the practical application of corrosion inhibitor, such as existing residual rust. Some studies also have shown that several corrosion inhibitors could be applied on partially rusted substrates. These inhibitors mainly include tannins and phosphoric acid, but not PA. Therefore, the authors investigated the influence of PA on the corrosion behavior of carbon steel with blast cleaned or pre-rusted treatments in this paper.


2016 ◽  
Vol 63 (4) ◽  
pp. 275-280
Author(s):  
Yao Ding ◽  
Zhengtang Luo ◽  
Dong Liu

Purpose The purpose of this paper is to use Dextrofosfomysin levophenethylamine salt to prepare HEHSPN-(Na)2 (HSPN), a new corrosion inhibitor containing sulfur. Design/methodology/approach The inhibition efficiency for Q235 steel in hydrochloric acid has been evaluated by weight-loss test, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Surface studies were performed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Findings The results show that inhibition efficiency of HSPN increases with an increase in concentration. Adsorption conforms to Flory–Huggins uniform temperature equation, which is multi-molecular layer adsorption and belongs to physical adsorption. Originality/value This paper is intended to be added to the family of papers that deal with green corrosion inhibitors which are highly efficient and can be used in the area of corrosion prevention and control.


2020 ◽  
Vol 5 (2) ◽  
pp. 9-16
Author(s):  
K.F. Oyedeko ◽  
◽  
HEPHIZIBAH Olaniyi

Corrosion inhibitors are vital in industry for protection and prevention of surfaces from corrosion attack. There is need to have green inhibitors that are environmentally friendly and not hazardous to use. Extract from stem of banana (Musa species: Musa-Acuminata) was considered as green inhibitors. Extracts from the stem of banana was subjected to physico-chemical, phytochemical screening and corrosion test using gravimetric measurement with a low carbon steel flat bar coupon. The corrosion inhibition mechanism of the plant extract on the low carbon steel surface in 1M HCl and H2SO4 acid at different temperatures (30 to 60oC) showed that the inhibition efficiency (IE) increased with increase in concentration of the inhibitor (15ml to 75ml) but decreased with increase in temperature (303K to 333K) for the inhibitors throughout the test period, indicating a physisorption of extract on the carbon steel surface. The adsorption on the low carbon steel surface agrees with the Langmuir adsorption isotherm. The inhibition efficiency of the extract was above 50% in both media with banana extract having 69.55% inhibition efficiency in H2SO4 solution


2019 ◽  
Vol 66 (5) ◽  
pp. 583-594
Author(s):  
Esma Sezer ◽  
İpek Öztürk

Purpose Tannic acid (TA) is one of the green corrosion inhibitors for mild steel; its anti-corrosive performance in alkaline water on mild steel when it is used together with polyaspartic acid (PASA) still has not been investigated. The purpose of this study is to develop an effective, biodegradable and environment-friendly novel corrosion inhibitor based on TA and PASA as an alternative to the conventional inorganic inhibitors for mild steel in decarbonised water, which is common in cooling systems. Design/methodology/approach Corrosion inhibition mechanism is investigated by electrochemical techniques such as polarisation measurements and electrochemical impedance spectroscopy, and results were evaluated to determine the optimum inhibitor concentration for industrial applications. Additionally, practice-like conditions are carried out in pilot plant studies to simulate the conditions in cooling systems. Thus, the efficiencies of the inhibitors are evaluated through both weight loss and linear polarisation resistance measurements. Moreover, the corrosion product is characterised by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR) analysis. Findings TA shows high inhibition efficiency especially towards pitting corrosion for mild steel in decarbonised water. PASA addition in the cooling systems improves the inhibition efficiency of TA, and at lower concentrations of TA + PASA, it is possible to obtained better inhibition efficiency than TA alone at higher inhibitor amounts, which is essential in economic and environmental aspect. Originality/value A blended inhibitor program including TA and PASA with suggested concentrations in this work can be used as an environmental friendly treatment concept for the mild steel corrosion inhibition at cooling systems.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Atria Pradityana ◽  
Sulistijono ◽  
Abdullah Shahab ◽  
Lukman Noerochim ◽  
Diah Susanti

Inhibitor is a substance that is added to the corrosive media to inhibit corrosion rate. Organic inhibitors are preferred to inorganic ones since they are environmentally friendly. One of the organic compounds which is rarely reported as a corrosion inhibitor isMyrmecodia Pendans. The organic compounds can be adsorbed on the metal surface and block the active surface to reduce the rate of corrosion. In this study, the used pipe was carbon steel API 5L Grade B with 3.5% NaCl solution as the corrosion medium. The objective of this research was to analyze the inhibition mechanismMyrmecodia Pendanstowards carbon steel in a corrosion medium. Concentration variations of extractMyrmecodia Pendanswere 0–500 ppm. Fourier Transform Infrared (FTIR) was used for chemical characterization ofMyrmecodia Pendans. Polarization and Electrochemical Impedance Spectroscopy (EIS) were used to measure the corrosion rate and behaviour. From the electrochemical measurements, it was found that the addition of 400 mg/L inhibitor gave the highest inhibition efficiency.Myrmecodia Pendansacted as a corrosion inhibitor by forming a thin layer on the metal surface.


RSC Advances ◽  
2021 ◽  
Vol 11 (35) ◽  
pp. 21607-21621
Author(s):  
Mingjun Cui ◽  
Xia Li

N,S-CDs as ecofriendly inhibitors effectively inhibit the acid corrosion of carbon steel with an inhibition efficiency of 96.6%.


2015 ◽  
Vol 62 (5) ◽  
pp. 301-306 ◽  
Author(s):  
Solhan Yahya ◽  
Norinsan Kamil Othman ◽  
Abdul Razak Daud ◽  
Azman Jalar ◽  
Roslina Ismail

Purpose – This paper aims to investigate the influence of temperature and lignin concentration on the inhibition of carbon steel corrosion in 1 M HCl. Design/methodology/approach – Weight loss corrosion tests were performed at different temperatures in the range of 30-70°C (303-343 K). Findings – It was found that the corrosion inhibition efficiency (IE) of lignin on the carbon steel decreased when the temperature was increased from 60 to 70°C. However, at lower temperatures ranging from 30 to 50°C, the IE improved, due to occurrence of lignin adsorption on the surface of metal specimens. The IE was higher with increasing lignin concentration, thus reducing the weight loss of the carbon steel. The adsorption phenomenon involved exothermic processes because the value of enthalpy of adsorption (ΔH°ads) < 0 and Gibbs free energy of adsorption (ΔG°ads) were less negative with increase in temperature. The entropy of adsorption (ΔS°ads) had negative values, representing the decrease in disorder of adsorption. The adsorption of lignin on the carbon steel surface in 1 M HCl was comprehensive, as deduced from kinetic and thermodynamic parameters. However, physisorption was the major contributor in the inhibition mechanism. The inhibitive features of carbon steel surfaces showed less damage once the steel was treated in lignin, as evident from macroscopy images. Practical implications – The use of lignin as an acid corrosion inhibitor at high temperature is practical in metal surface treatment process. Social implications – The use of organic compounds gives an advantage to the environment, universal health and save cost, as the compounds can be found in nature. Originality/value – Lignin can act as a flexible corrosion inhibitor within the temperature range of 30-70°C in 1 M HCl because it exhibits comprehensive adsorption (i.e. a combination of both physisorption and chemisorption) at specific concentrations.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Chuan Lai ◽  
Bin Xie ◽  
Changlu Liu ◽  
Wan Gou ◽  
Lvshan Zhou ◽  
...  

N,N-Diethylammonium O,O′-di(p-methoxyphenyl)dithiophosphate (EAPP) as a new corrosion inhibitor was synthesized in the present work. The corrosion inhibition of EAPP in hydrochloric acid for carbon steel was evaluated by potentiodynamic polarization measurements, electrochemical impedance spectroscopy, weight loss measurements, and scanning electron microscopy. The results indicate that the EAPP is mixed type inhibitor, and the adsorption of EAPP on carbon steel surface obeys Langmuir isotherm. In addition, the inhibition efficiency increases with increasing the concentration of inhibitor and decreases with increasing the hydrochloric acid concentration, temperature, and storage time.


Sign in / Sign up

Export Citation Format

Share Document