Performance comparison of modified elephant herding optimization tuned MPPT for PV based solar energy systems

Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Annapoorani Subramanian ◽  
Jayaparvathy R.

Purpose The solar photovoltaic (PV) system is one of the outstanding, clean and green energy options available for electrical power generation. The varying meteorological operating conditions impose various challenges in extracting maximum available power from the solar PV system. The drawbacks of conventional and evolutionary algorithms-based maximum power point tracking (MPPT) approaches are its inability to extract maximum power during partial shading conditions and quickly changing irradiations. Hence, the purpose of this paper is to propose a modified elephant herding optimization (MEHO) based MPPT approach to track global maximum power point (GMPP) proficiently during dynamic and steady state operations within less time. Design/methodology/approach A MEHO-based MPPT approach is proposed in this paper by incorporating Gaussian mutation (GM) in the original elephant herding optimization (EHO) to enhance the optimizing capability of determining the optimal value of DC–DC converter’s duty cycle (D) to operate at GMPP. Findings The effectiveness of the proposed system is compared with EHO based MPPT, Firefly Algorithm (FA) MPPT and particle swarm optimization (PSO) MPPT during uniform irradiation condition (UIC) and partial shading situation (PSS) using simulation results. An experimental setup has been designed and implemented. Simulation results obtained are validated through experimental results which prove the viability of the proposed technique for an efficient green energy solution. Originality/value With the proposed MEHO MPPT, it has been noted that the settling period is lowered by 3.1 times in comparison of FA MPPT, 1.86 times when compared to PSO based MPPT and 1.29 times when compared to EHO based MPPT with augmented efficiency of 99.27%.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Manel Hlaili ◽  
Hfaiedh Mechergui

Photovoltaic (PV) energy is one of the most important energy sources since it is clean and inexhaustible. It is important to operate PV energy conversion systems in the maximum power point (MPP) to maximize the output energy of PV arrays. An MPPT control is necessary to extract maximum power from the PV arrays. In recent years, a large number of techniques have been proposed for tracking the maximum power point. This paper presents a comparison of different MPPT methods and proposes one which used a power estimator and also analyses their suitability for systems which experience a wide range of operating conditions. The classic analysed methods, the incremental conductance (IncCond), perturbation and observation (P&O), ripple correlation (RC) algorithms, are suitable and practical. Simulation results of a single phase NPC grid connected PV system operating with the aforementioned methods are presented to confirm effectiveness of the scheme and algorithms. Simulation results verify the correct operation of the different MPPT and the proposed algorithm.


2021 ◽  
Vol 13 (5) ◽  
pp. 2656
Author(s):  
Ahmed G. Abo-Khalil ◽  
Walied Alharbi ◽  
Abdel-Rahman Al-Qawasmi ◽  
Mohammad Alobaid ◽  
Ibrahim M. Alarifi

This work presents an alternative to the conventional photovoltaic maximum power point tracking (MPPT) methods, by using an opposition-based learning firefly algorithm (OFA) that improves the performance of the Photovoltaic (PV) system both in the uniform irradiance changes and in partial shading conditions. The firefly algorithm is based on fireflies’ search for food, according to which individuals emit progressively more intense glows as they approach the objective, attracting the other fireflies. Therefore, the simulation of this behavior can be conducted by solving the objective function that is directly proportional to the distance from the desired result. To implement this algorithm in case of partial shading conditions, it was necessary to adjust the Firefly Algorithm (FA) parameters to fit the MPPT application. These parameters have been extensively tested, converging satisfactorily and guaranteeing to extract the global maximum power point (GMPP) in the cases of normal and partial shading conditions analyzed. The precise adjustment of the coefficients was made possible by visualizing the movement of the particles during the convergence process, while opposition-based learning (OBL) was used with FA to accelerate the convergence process by allowing the particle to move in the opposite direction. The proposed algorithm was simulated in the closest possible way to authentic operating conditions, and variable irradiance and partial shading conditions were implemented experimentally for a 60 [W] PV system. A two-stage PV grid-connected system was designed and deployed to validate the proposed algorithm. In addition, a comparison between the performance of the Perturbation and Observation (P&O) method and the proposed method was carried out to prove the effectiveness of this method over the conventional methods in tracking the GMPP.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2521
Author(s):  
Alfredo Gil-Velasco ◽  
Carlos Aguilar-Castillo

There are multiples conditions that lead to partial shading conditions (PSC) in photovoltaic systems (PV). Under these conditions, the harvested energy decreases in the PV system. The maximum power point tracking (MPPT) controller aims to harvest the greatest amount of energy even under partial shading conditions. The simplest available MPPT algorithms fail on PSC, whereas the complex ones are effective but require high computational resources and experience in this type of systems. This paper presents a new MPPT algorithm that is simple but effective in tracking the global maximum power point even in PSC. The simulation and experimental results show excellent performance of the proposed algorithm. Additionally, a comparison with a previously proposed algorithm is presented. The comparison shows that the proposal in this paper is faster in tracking the maximum power point than complex algorithms.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 483
Author(s):  
Novie Ayub Windarko ◽  
Muhammad Nizar Habibi ◽  
Bambang Sumantri ◽  
Eka Prasetyono ◽  
Moh. Zaenal Efendi ◽  
...  

During its operation, a photovoltaic system may encounter many practical issues such as receiving uniform or non-uniform irradiance caused mainly by partial shading. Under uniform irradiance a photovoltaic panel has a single maximum power point. Conversely under non-uniform irradiance, a photovoltaic panel has several local maximum power points and a single global maximum power point. To maximize energy production, a maximum power point tracker algorithm is commonly implemented to achieve the maximum power operating point of the photovoltaic panel. However, the performance of the algorithm will depend on operating conditions such as variation in irradiance. Presently, most of existing maximum power point tracker algorithms work only in a single condition: either uniform or non-uniform irradiance. This paper proposes a new maximum power point tracker algorithm for photovoltaic power generation that is designed to work under uniform and partial shading irradiance conditions. Additionally, the proposed maximum power point tracker algorithm aims to provide: (1) a simple math algorithm to reduce computational load, (2) fast tracking by evaluating progress for every single executed duty cycle, (3) without random steps to prevent jumping duty cycle, and (4) smooth variable steps to increase accuracy. The performances of the proposed algorithm are evaluated by three conditions of uniform and partial shading irradiance where a targeted maximum power point is located: (1) far from, (2) near, and (3) laid between initial positions of particles. The simulation shows that the proposed algorithm successfully tracks the maximum power point by resulting in similar power values in those three conditions. The proposed algorithm could handle the partial shading condition by avoiding the local maxima power point and finding the global maxima power point. Comparisons of the proposed algorithm and other well-known algorithms such as differential evolution, firefly, particle swarm optimization, and grey wolf optimization are provided to show the superiority of the proposed algorithm. The results show the proposed algorithm has better performance by providing faster tracking, faster settling time, higher accuracy, minimum oscillation and jumping duty cycle, and higher energy harvesting.


2018 ◽  
Vol 7 (1) ◽  
pp. 66-85 ◽  
Author(s):  
Afef Badis ◽  
Mohamed Habib Boujmil ◽  
Mohamed Nejib Mansouri

This article concerns maximizing the energy reproduced from the photovoltaic (PV) system, ensured by using an efficient Maximum Power Point Tracking (MPPT) process. The process should be fast, rigorous and simple for implementation because the PV characteristics are extremely affected by fast changing conditions and Partial Shading (PS). PV systems are popularly known to have many peaks (one Global Peak (GP) and several local peaks). Therefore, the MPPT algorithm should be able to accurately detect the unique GP as the maximum power point (MPP), and avoid any other peak to mitigate the effect of (PS). Usually, with no shading, nearly all the conventional methods can easily reach the MPP with high efficiency. Nonetheless, they fail to extract the GP when PS occurs. To overcome this problem, Evolutionary Algorithms (AEs), namely the Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are simulated and compared to the conventional methods (Perturb & Observe) under the same software.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4971
Author(s):  
Hegazy Rezk ◽  
Ahmed Fathy

A significant growth in PV (photovoltaic) system installations have been observed during the last decade. The PV array has a nonlinear output characteristic because of weather intermittency. Partial shading is an environmental phenomenon that causes multiple peaks in the power curve and has a negative effect on the efficiency of the conventional maximum power point tracking (MPPT) methods. This tends to have a substantial effect on the overall performance of the PV system. Therefore, to enhance the performance of the PV system under shading conditions, the global MPPT technique is mandatory to force the PV system to operate close to the global maximum. In this paper, for the first time, a stochastic fractal search (SFS) optimization algorithm is applied to solve the dilemma of tracking the global power of PV system based triple-junction solar cells under shading conditions. SFS has been nominated because it can converge to the best solution at a fast rate. Moreover, balance between exploration and exploitation phases is one of its main advantages. Therefore, the SFS algorithm has been selected to extract the global maximum power point (MPP) under partial shading conditions. To prove the superiority of the proposed global MPPT–SFS based tracker, several shading scenarios have been considered. The idea of changing the shading scenario is to change the position of the global MPP. The obtained results are compared with common optimizers: Antlion Optimizer (ALO), Cuckoo Search (CS), Flower Pollination Algorithm (FPA), Firefly-Algorithm (FA), Invasive-Weed-Optimization (IWO), JAYA and Gravitational Search Algorithm (GSA). The results of comparison confirmed the effectiveness and robustness of the proposed global MPPT–SFS based tracker over ALO, CS, FPA, FA, IWO, JAYA, and GSA.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1962
Author(s):  
Muhammad Hamza Zafar ◽  
Thamraa Al-shahrani ◽  
Noman Mujeeb Khan ◽  
Adeel Feroz Mirza ◽  
Majad Mansoor ◽  
...  

The most cost-effective electrical energy is produced by photovoltaic (PV) systems, and with the smallest carbon footprint, making it a sustainable renewable energy. They provide an excellent alternative to the existing fossil fuel-based energy systems, while providing 4% of global electricity demand. PV system efficiency is significantly reduced by the intrinsic non-linear model, maximum power point (MPP), and partial shading (PS) effects. These two problems cause major power loss. To devise the maximum power point tracking (MPPT) control of the PV system, a novel group teaching optimization algorithm (GTOA) based controller is presented, which effectively deals with the PS and complex partial shading (CPS) conditions. Four case studies were employed that included fast-changing irradiance, PS, and CPS to test the robustness of the proposed MPPT technique. The performance of the GTOA was compared with the latest bio-inspired techniques, i.e., dragon fly optimization (DFO), cuckoo search (CS), particle swarm optimization (PSO), particle swarm optimization gravitational search (PSOGS), and conventional perturb and observe (P&O). The GTOA tracked global MPP with the highest 99.9% efficiency, while maintaining the magnitude of the oscillation <0.5 W at global maxima (GM). Moreover, 13–35% faster tracking times, and 54% settling times were achieved, compared to existing techniques. Statistical analysis was carried out to validate the robustness and effectiveness of the GTOA. Comprehensive analytical and statistical analysis solidified the superior performance of the proposed GTOA based MPPT technique.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4938
Author(s):  
Waleed Al Abri ◽  
Rashid Al Abri ◽  
Hassan Yousef ◽  
Amer Al-Hinai

Partial shading conditions (PSCs) can significantly reduce the output energy produced by photovoltaic (PV) systems. Moreover, when such conditions occur, conventional and advanced maximum power point tracking (MPPT) systems fail to operate the PV system at its peak because the bypassing diodes may cause the PV system to become trapped at a low power point when they are in conduction mode. The PV system can be operated at the global maximum power point (MPP) with the help of global peak searching tools. However, the frequent use of these tools will reduce the output of PV systems since they force the PV system to operate outside its power region while scanning the I-V curve in order to determine the global MPP. Thus, the global peak searching tools should be deployed only when a PSC occurs. In this paper, a simple and accurate method is proposed for detecting PSCs by means of monitoring the sign of voltage changes (positive or negative). The method predicts a PSC if the sign of successive voltage changes is the same for a certain number of successive changes. The proposed method was tested on two types of PV array configurations (series and series–parallel) with several shading patterns emulated on-site. The proposed method correctly and timely identified all emulated shading patterns. It can be used to trigger the global MPP searching techniques for improving the PV system’s output under PSCs; furthermore, it can be used to notify the PV system’s operator of the occurrence of PSCs.


Sign in / Sign up

Export Citation Format

Share Document