A self-powered ultra-low-power intermittent-control SSHI circuit for piezoelectric energy harvesting

Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guoda Wang ◽  
Ping Li ◽  
Yumei Wen ◽  
Zhichun Luo

Purpose Existing control circuits for piezoelectric energy harvesting (PEH) suffers from long startup time or high power consumption. This paper aims to design an ultra-low power control circuit that can harvest weak ambient vibrational energy on the order of several microwatts to power heavy loads such as wireless sensors. Design/methodology/approach A self-powered control circuit is proposed, functioning for very brief periods at the maximum power point, resulting in a low duty cycle. The circuit can start to function at low input power thresholds and can promptly achieve optimal operating conditions when cold-starting. The circuit is designed to be able to operate without stable DC power supply and powered by the piezoelectric transducers. Findings When using the series-synchronized switch harvesting on inductor circuit with a large 1 mF energy storage capacitor, the proposed circuit can perform 322% better than the standard energy harvesting circuit in terms of energy harvested. This control circuit can also achieve an ultra-low consumption of 0.3 µW, as well as capable of cold-starting with input power as low as 5.78 µW. Originality/value The intermittent control strategy proposed in this paper can drastically reduce power consumption of the control circuit. Without dedicated cold-start modules and DC auxiliary supply, the circuit can achieve optimal efficiency within one input cycle, if the input signal is larger than voltage threshold. The proposed control strategy is especially favorable for harvesting energy from natural vibrations and can be a promising solution for other PEH circuits as well.

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3151
Author(s):  
Shuo Yang ◽  
Bin Wu ◽  
Xiucheng Liu ◽  
Mingzhi Li ◽  
Heying Wang ◽  
...  

In this study, a novel piezoelectric energy harvester (PEH) based on the array composite spherical particle chain was constructed and explored in detail through simulation and experimental verification. The power test of the PEH based on array composite particle chains in the self-powered system was realized. Firstly, the model of PEH based on the composite spherical particle chain was constructed to theoretically realize the collection, transformation, and storage of impact energy, and the advantages of a composite particle chain in the field of piezoelectric energy harvesting were verified. Secondly, an experimental system was established to test the performance of the PEH, including the stability of the system under a continuous impact load, the power adjustment under different resistances, and the influence of the number of particle chains on the energy harvesting efficiency. Finally, a self-powered supply system was established with the PEH composed of three composite particle chains to realize the power supply of the microelectronic components. This paper presents a method of collecting impact energy based on particle chain structure, and lays an experimental foundation for the application of a composite particle chain in the field of piezoelectric energy harvesting.


2020 ◽  
Vol 17 (17) ◽  
pp. 20200269-20200269
Author(s):  
Huakang Xia ◽  
Yinshui Xia ◽  
Yidie Ye ◽  
Ge Shi ◽  
Xiudeng Wang ◽  
...  

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 104621-104629 ◽  
Author(s):  
Xiaobo Rui ◽  
Zhoumo Zeng ◽  
Yu Zhang ◽  
Yibo Li ◽  
Xinjing Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document