Spatial combined cable element for cable-supported bridges

2018 ◽  
Vol 36 (1) ◽  
pp. 204-225 ◽  
Author(s):  
Jiandong Wei ◽  
Manyu Guan ◽  
Qi Cao ◽  
Ruibin Wang

Purpose The purpose of this paper is to analyze the cable-supported bridges more efficiently by building the finite element model with the spatial combined cable element. Design/methodology/approach The spatial combined cable element with rigid arms and elastic segments was derived. By using the analytical solution of the elastic catenary to establish the flexibility matrix at the end of the cable segment and adding it to the flexibility matrix at the ends of the two elastic segments, the flexibility matrix at the end of the cable body is obtained. Then the stiffness matrix of the cable body is established and the end force vector of cable body is given. Using the displacement transformation relationship between the two ends of the rigid arm, the stiffness matrix of the combined cable element is derived. By assigning zero to the length of the elastic segment(s) or/and the rigid arm(s), many subdivisions of the combined cable element can be obtained, even the elastic catenary element. Findings The examples in this field and specially designed examples proved the correctness of the proposed spatial combined cable element. Originality/value The combined cable element proposed in this study can be used for the design and analysis of cable-stayed bridges. Case studies show that it is able to simulate cable accurately and could also be used to simulate the suspenders in arch bridges as well in suspension bridges.

Author(s):  
Kevin Darques ◽  
Abdelmounaïm Tounzi ◽  
Yvonnick Le-menach ◽  
Karim Beddek

Purpose This paper aims to go deeper on the analysis of the shaft voltage of large turbogenerators. The main interest of this study is the investigation process developed. Design/methodology/approach The analysis of the shaft voltage because of several defects is based on a two-dimensional (2D) finite element modeling. This 2D finite element model is used to determine the shaft voltage because of eccentricities or rotor short-circuit. Findings Dynamic eccentricities and rotor short circuit do not have an inherent impact on the shaft voltage. Circulating currents in the stator winding because of defects impact the shaft voltage. Originality/value The original value of this paper is the investigation process developed. This study proposes to quantify the impact of a smooth stator and then to explore the contribution of the real stator winding on the shaft voltage.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
B. Asgari ◽  
S. A. Osman ◽  
A. Adnan

The model tuning through sensitivity analysis is a prominent procedure to assess the structural behavior and dynamic characteristics of cable-stayed bridges. Most of the previous sensitivity-based model tuning methods are automatic iterative processes; however, the results of recent studies show that the most reasonable results are achievable by applying the manual methods to update the analytical model of cable-stayed bridges. This paper presents a model updating algorithm for highly redundant cable-stayed bridges that can be used as an iterative manual procedure. The updating parameters are selected through the sensitivity analysis which helps to better understand the structural behavior of the bridge. The finite element model of Tatara Bridge is considered for the numerical studies. The results of the simulations indicate the efficiency and applicability of the presented manual tuning method for updating the finite element model of cable-stayed bridges. The new aspects regarding effective material and structural parameters and model tuning procedure presented in this paper will be useful for analyzing and model updating of cable-stayed bridges.


2019 ◽  
Vol 71 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Shixian Xu ◽  
Zhengtao Su ◽  
Jian Wu

Purpose This paper aims to research the influence of pressure, friction factors, roughness and actuating speed to the mixed lubrication models of outstroke and instroke. Design/methodology/approach Mixed lubrication model is solved by finite volume method, which consists of coupled fluid mechanics, deformation mechanics and contact mechanics analyses. The influence of friction factor on the finite element model is also considered. Then, contact pressure, film thickness, friction and leakage have been studied. Findings It was found that the amount of leakage is sensitive to the film thickness. The larger the film thickness is, the greater the influence received from the friction factor, however, the effect of oil film on the friction is negligible. The friction is determined mainly by the contact pressure. The trend of friction and leakage influenced by actuating velocity and roughness is also obtained. Originality/value The influence of friction factor on the finite element model is considered. This can make the calculation more accurate.


Author(s):  
Sergey Yu. Fialko

A special finite element modelling rigid links is proposed for the linear static and buckling analysis. Unlike the classical approach based on the theorems of rigid body kinematics, the proposed approach preserves the similarity between the adjacency graph for a sparse matrix and the adjacency graph for nodes of the finite element model, which allows applying sparse direct solvers more effectively. Besides, the proposed approach allows significantly reducing the number of nonzero entries in the factored stiffness matrix in comparison with the classical one, which greatly reduces the duration of the solution. For buckling problems of structures containing rigid bodies, this approach gives correct results. Several examples demonstrate its efficiency.


Vibration ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 56-68
Author(s):  
Mustapha Dahak ◽  
Noureddine Touat ◽  
Tarak Benkedjouh

The objective of this work is to use natural frequencies for the localization and quantification of cracks in beams. First, to study the effect of the crack on natural frequencies, a finite element model of Euler–Bernoulli is presented. Concerning the damaged element, the stiffness matrix is calculated by the theory of fracture mechanics, by inverting the flexibility matrix. Then, in order to detect damage, we are going to show that the shape given by the change in the natural frequencies is as function of the damage position only. Thus, the crack is located by the correlation between the shape of the measured frequencies and those obtained by the finite elements, where the position that gives the calculated shape which is the most similar to the measured one, indicates the crack position. After the localization, an inverse method will be applied to quantify the damage. Finally, an experimental application is presented to show the real applicability of the method, in which the crack is introduced by using an Electrical Discharge Machining. The results confirm the applicability of the method for the localization and the quantification of cracks.


2014 ◽  
Vol 551 ◽  
pp. 444-447
Author(s):  
Sheng Lin ◽  
Xi Kong ◽  
Chun Wang

Based on the method of Freedom and Constraint Topology (FACT), a compliant mechanism with 3 degrees of freedom is designed. The 3 DOF are one movement and two rotations, which belongs to Case 3, Type 2. The whole stiffness matrix of the compliant mechanism is obtained. The finite element model is established for statics analysis. The results of theory analysis and finite element method are closed.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jialin Song ◽  
Yang Lu ◽  
Yongli Wang ◽  
Yi Lu

The stiffness and elastic deformation of a 4-DoF parallel manipulator with three asymmetrical legs are studied systematically for supporting helicopter rotor. First, a 4-DoF 2SPS + RRPR type parallel manipulator with two linear SPS type legs and one RRPR type composite leg is constructed and its constraint characteristics are analyzed. Second, the formulas for solving the elastic deformation and the stiffness matrix of the above mentioned three asymmetrical legs are derived. Third, the formulas for solving the total stiffness matrix and the elastic deformation of this manipulator are derived and analyzed. Finally, its finite element model is constructed and its elastic deformations are solved using both the derived theoretical formulas and the finite element model. The theoretical solutions of the elastic deformations are verified by that of the finite element model.


2011 ◽  
Vol 94-96 ◽  
pp. 375-380
Author(s):  
Xiao Dong Zhang ◽  
Yong Qiang Zhang

A method for determining the springing displacements and arch axis of old arch bridges without technical data is presented. By minimizing the difference between the arch axis predicted by the finite element model and the one obtained by assumed arch equation, the optimization problem is formulated and solved. Two numerical examples are given and the results are discussed.


Author(s):  
Peter Offermann ◽  
Kay Hameyer

Purpose – The consideration of uncertainties in the numerical computation of electromagnetic fields has recently gained a lot of attention. Most publications focus on the creation of models for the uncertainty quantification, however, neglect the inaccuracy of the applied finite element model itself. Thus, the purpose of this paper is to analyze the influence of mesh quality on stochastic cogging torque calculations. Design/methodology/approach – The presented work consists of three steps. At first, a conventional analysis of the influence of mesh accuracy onto cogging torque is presented. Afterwards, the method is extended to stochastic calculations. Based on a comparison of the convergence behavior of both approaches, a method for more accurate cogging torque predictions with fewer necessary calculations is derived. Findings – An improved method to calculate probability predictions at minimum computational cost is presented and applied. Research limitations/implications – The presented approach requires the exact knowledge of the system’s stochastic variation boundaries. Originality/value – A fast method for more accurate stochastic cogging torque calculations is developed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Istvan Keppler ◽  
Adrienn Bablena ◽  
Nihal D. Salman ◽  
Péter Kiss

PurposeTransportation of the measurement samples from their original place to the measurement site causes significant changes in their mechanical properties. The possibility of making in situ measurements helps to create more precise discrete element models.Design/methodology/approachThe possibility of using in situ modified vane shear test based measurement for the calibration of discrete element models is demonstrated in this work.FindingsThe advantage of employing the adjusted vane test is that the values of in situ measurements can be used for the calibration.Originality/valueThe procedure we present allows us to perform accurate discrete element calibration using data from on-site measurements that can be performed quickly and easily.


Sign in / Sign up

Export Citation Format

Share Document