Numerical simulation of pressure drop for three-dimensional rectangular microchannels

2018 ◽  
Vol 35 (6) ◽  
pp. 2234-2254 ◽  
Author(s):  
Zhipeng Duan ◽  
Peng Liang ◽  
Hao Ma ◽  
Niya Ma ◽  
Boshu He

Purpose The purpose of this paper is to numerically investigate the flow characteristics and extend the data of friction factor and Reynolds number product of hydrodynamically developing laminar flow in three-dimensional rectangular microchannels with different aspect ratios. Design/methodology/approach Using a finite-volume approach, the friction factor characteristics of Newtonian fluid in three-dimensional rectangular ducts with aspect ratios from 0.1 to 1 are conducted numerically under no-slip boundary conditions. A simple model that approximately predicts the apparent friction factor and Reynolds number product fappRe is referenced as a semi-theoretical fundamental analysis for numerical simulations. Findings The accurate and reliable results of fappRe are obtained, which are compared with classic numerical data and experimental data, and the simple semi-theoretical model used and all comparisons show good agreement. Among them, the maximum relative error with the classic numerical data is less than 3.9 per cent. The data of fappRe are significantly extended to other different aspect ratios and the novel values of fappRe are presented in the tables. The characteristics of fappRe are analyzed as a function of a non-dimensional axial distance and the aspect ratios. A more effective and accurate fourth-order fitting equation for the Hagenbach's factor of rectangular channels is proposed. Originality/value From the reliable data, it is shown that the values of fappRe and the model can be references of pressure drop and friction factor for developing laminar flow in rectangular channels for researchers and engineering applications.

2018 ◽  
Vol 28 (7) ◽  
pp. 1664-1683 ◽  
Author(s):  
Fakhrodin Lalegani ◽  
Mohammad Reza Saffarian ◽  
Ahmadreza Moradi ◽  
Ebrahim Tavousi

Purpose According to very small dimensions of the microchannels, producing a microchannel with smooth surfaces is approximately impossible. The surface roughness can have a specific effect on microchannel performances. This paper aims to investigate the changes in friction and pressure drop in the microchannels by considering the different roughness elements on microchannel wall and changes in elementary geometry and flow conditions. Results show a significant effect of roughness on the pressure drop and friction. Design/methodology/approach Two-dimensional fluid flow in the rough microchannels is analyzed using FLUENT. Microchannels have a height of 50 µm. Water at room temperature (25°C) has been used as working fluid. The Reynolds numbers are considered in laminar flow range and from 50 to 300. Findings The results show that the value of friction factor reduces nonlinearly with an increase in Reynolds number. But, the pressure drops and the Poiseuille number in the microchannels increase with an increase in Reynolds number. The values of the pressure drop and the friction factor increase by increasing the height and size of the roughness elements, but these values reduce with an increase in the distance of roughness elements. Originality/value The roughness elements types in this research are rectangular, trapezoidal, elliptical, triangular and complex (composed of multiple types of roughness elements). The effects of the Reynolds number, roughness height, roughness distance and roughness size on the pressure drop and friction in the rough microchannels are investigated and discussed. Furthermore, differences between the effects of five types of roughness elements are identified.


1996 ◽  
Vol 118 (3) ◽  
pp. 584-589 ◽  
Author(s):  
W. M. Chakroun ◽  
S. F. Al-Fahed

A series of experiments was conducted to study the effect of twisted-tape width on the heat transfer and pressure drop with laminar flow in tubes. Data for three twisted-tape wavelengths, each with five different widths, have been collected with constant wall temperature boundary condition. Correlations for the friction factor and Nusselt number are also available. The correlations predict the experimental data to within 10 to 15 percent for the heat transfer and friction factor, respectively. The presence of the twisted tape has caused the friction factor to increase by a factor of 3 to 7 depending on Reynolds number and the twisted-tape geometry. Heat transfer results have shown an increase of 1.5 to 3 times that of plain tubes depending on the flow conditions and the twisted-tape geometry. The width shows no effect on friction factor and heat transfer in the low range of Reynolds number but has a more pronounced effect on heat transfer at the higher range of Reynolds number. It is recommended to use loose-fit tapes for low Reynolds number flows instead of tight-fit in the design of heat exchangers because they are easier to install and remove for cleaning purposes.


1976 ◽  
Vol 98 (1) ◽  
pp. 41-48 ◽  
Author(s):  
K. C. Cheng ◽  
Ran-Chau Lin ◽  
Jenn-Wuu Ou

The Navier-Stokes equations are solved by a numerical method for steady, fully developed, incompressible, laminar flow in curved rectangular channels considering the curvature ratio effect in the formulation. Solutions are obtained for aspect ratios 1, 2, 5 and 0.5 and Dean number ranges from 5 to 715, for example, for the case of square channel. It is found that an additional counter-rotating pair of vortices appears near the central outer region of the channel in addition to the familiar secondary flow at a certain higher Dean number depending on the aspect ratio. This phenomenon is consistent with Dean’s centrifugal instability problem and the secondary flow patterns with two pairs of counter-rotating vortices have not been reported in the past. The correlation equations for the friction factor are developed. The friction factor results are compared with the available theoretical and experimental results for the case of curved square channel and the agreement is found to be good.


Author(s):  
Goktug Kalayci ◽  
Evren M. Ozbayoglu ◽  
Stefan Z. Miska ◽  
Mengjiao Yu ◽  
Nicholas Takach ◽  
...  

It is well known that a Newtonian fluid with the presence of solid particles in suspension behaves non-Newtonian. Higher the solid content, more significant the yield stress of the fluid. Determination of the hydraulic behavior of fluids having a significant yield stress is a challenging task. For engineering purposes, pressure drop within the system, during pipeline transportation, has to be estimated carefully and accurately. Flow regime plays a vital role during hydraulic calculations. The inaccurate determination of flow regime can lead us to large errors in frictional pressure drop calculations and ultimately leads to error in designing and flow assurance point of view, since hydraulic calculations are including a friction factor term, which is a direct function of flow regime. In general, Reynolds number is the main parameter used by the industry for determining the flow regime, and the friction factor. This approach works reasonably accurate for Newtonian fluids. However, as the yield stress of the fluid increases, this conventional technique for determining the flow regime is not as accurate. Although many approaches have been introduced for estimating the flow regime for non-Newtonian fluids, there exists a lack of information and confidence of such predictions for fluids having high yield stress, such as Yield Power Law (YPL) fluids (i.e., Herchel-Bulkley). (1)τ=τy+Kγm This study presents an analytical solution for predicting the transition from laminar to non-laminar flow regime based on Ryan & Johnson’s approach using the stability analysis and equation of motion for YPL fluids. Comparing with the experimental results for YPL fluids under different flow conditions, including laminar and non-laminar flow regimes, show that presented approach gives a better estimation of the transition from laminar to non-laminar flow regime than conventional Reynolds number approach. In some cases, it is observed that although the Reynolds number is high, flow is still laminar, which is predicted accurately using the presented model. This study provides a higher accuracy in estimating the flow regime, which leads to a higher confidence in hydraulic designs and determining limitations of the system in concern.


Author(s):  
Marjan Goodarzi ◽  
Iskander Tlili ◽  
Zhe Tian ◽  
Mohammad Reza Safaei

Purpose This study aims to model the nanofluid flow in microchannel heat sinks having the same length and hydraulic diameter but different cross-sections (circular, trapezoidal and square). Design/methodology/approach The nanofluid is graphene nanoplatelets-silver/water, and the heat transfer in laminar flow was investigated. The range of coolant Reynolds number in this investigation was 200 ≤ Re ≤ 1000, and the concentrations of nano-sheets were from 0 to 0.1 vol. %. Findings Results show that higher temperature leads to smaller Nusselt number, pressure drop and pumping power, and increasing solid nano-sheet volume fraction results in an expected increase in heat transfer. However, the influence of temperature on the friction factor is insignificant. In addition, by increasing the Reynolds number, the values of pressure drop, pumping power and Nusselt number augments, but friction factor diminishes. Research limitations/implications Data extracted from a recent experimental work were used to obtain thermo-physical properties of nanofluids. Originality/value The effects of temperature, microchannel cross-section shape, the volume concentration of nanoparticles and Reynolds number on thermal and hydraulics behavior of the nanofluid were investigated. Results are presented in terms of velocity, Nusselt number, pressure drop, friction loss and pumping power in various conditions. Validation of the model against previous papers showed satisfactory agreement.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Dustin R. Ray ◽  
Debendra K. Das

Abstract A three-dimensional laminar flow model was used for 37 Reynolds numbers (0.1, 0.2…1, 2…10, 20…100, and 200…1000) through six rectangular microchannels (aspect ratios: 1, 0.75, 0.5, 0.25, 0.2, and 0.125) to develop correlations for hydrodynamic entrance length. The majority of the Reynolds numbers are in the low regime (Re < 100) to fulfill the need to determine the hydrodynamic entrance length for microchannels. Examination of the fully developed flow condition was considered using the velocity or fRe criteria. Numerical results from the present simulations were validated by comparing the fRe results. Two new correlations were developed from a vast amount of numerical data (222 simulations). The velocity criterion correlations predict entrance length with a mean error of 4.67% and maximum error of 10.28%. The fRe criterion generated better correlations and were developed as a function of aspect ratio to predict entrance length with a mean error less than 2% and maximum error of 5.75% for 0.1 ≤ Re ≤ 1000 and 0 ≤ α ≤ ∞.


2004 ◽  
Vol 127 (9) ◽  
pp. 966-977 ◽  
Author(s):  
S. K. Saha ◽  
D. N. Mallick

Abstract The present paper reports the results of an experimental investigation of the heat transfer and pressure drop characteristics of laminar flow of viscous oil through horizontal rectangular and square plain ducts and ducts inserted with full-length twisted tapes, short-length twisted tapes, and regularly spaced twisted-tape elements. Isothermal pressure drop measurements were taken in acrylic ducts. Heat transfer measurements were taken in electrically heated stainless-steel ducts imposing uniform wall heat flux boundary conditions. The duct aspect ratios AR were 1, 0.5, and 0.333. The twist ratios of the twisted tapes were y=2.692, 5.385, 2.597, 5.193, 2.308, and 4.615. Short-length tapes were 0.9, 0.7, and 0.5 times the duct length. The space ratios were s=2.692, 5.385, 2.597, 5.193, 2.308, and 4.615. Both friction factor and Nusselt number increase with decreasing y and AR for AR⩽1 and increasing Re, Sw, and Pr. As the tape-length decreases, both friction factor and Nusselt number decrease. Friction factor increases as s decreases, and Nusselt number increases as s increases. Isothermal friction factor correlation and comprehensive Nusselt number correlation have been developed to predict data reasonably well in the entire range of parameters. Performance evaluation says that short-length twisted tapes are worse and regularly spaced twisted-tape elements are better than the full-length twisted tapes.


Author(s):  
Walid M. Chakroun ◽  
Sami F. Al-Fahed

A series of experiments was conducted to study the effect of twisted-tape width on the heat transfer and pressure drop with laminar flow in tubes. Data for three twisted-tape wave lengths each with five different widths have been collected with constant wall temperature boundary condition. Correlations for the friction factor and Nusselt number are also available. The correlations predict the experimental data to within 10 % to 15 % for the heat transfer and friction factor, respectively. The presence of the twisted tape has caused the friction factor to increase by a factor of 3 to 7 depending on Reynolds number and the twisted-tape geometry. Heat-transfer results have shown an increase of 1.5 to 3 times that of plain tubes depending on the flow conditions and the twisted-tape geometry. The width shows no effect on friction factor and heat transfer in the low range of Reynolds number but have a more pronounced effect on heat transfer at the higher range of Reynolds number. It is recommended to use a loose-fit tapes for low Reynolds number flows instead of tight-fit in the design of heat exchangers because they are easier to install and remove for cleaning purposes.


1976 ◽  
Vol 98 (2) ◽  
pp. 173-180 ◽  
Author(s):  
O. C. Jones

Frictional pressure drop in rectangular ducts is examined. Using correspondence between theory and experiment in laminar flow as a means for acceptance of published data, turbulent flow data for smooth rectangular ducts were compared with smooth circular tube data. Data for ducts having aspect ratios between unity and 39:1 were obtained in the literature and, in conjunction with new experimental data, were examined for deviations from the smooth circular tube line (smooth Moody). It was found that at constant Reynolds number based on hydraulic diameter the friction factor increases monotonically with increasing aspect ratio. It was thus concluded that the hydraulic diameter is not the proper length dimension to use in the Reynolds number to insure similarity between the circular and rectangular ducts. Instead, it was determined that if a modified Reynolds number Re* was obtained so that geometric similarity was provided in laminar flow by the relation f = 64/Re* for all geometries, that this Reynolds number also provided good similarity in fully developed turbulent flow within a ∼ 5 percent scatter band about the smooth tube line. By using this “laminar equivalent” Reynolds number, Re*, it is demonstrated that circular tube methods may be readily applied to rectangular ducts eliminating large errors in estimation of friction factor.


2019 ◽  
Vol 30 (7) ◽  
pp. 3827-3842
Author(s):  
Samer Ali ◽  
Zein Alabidin Shami ◽  
Ali Badran ◽  
Charbel Habchi

Purpose In this paper, self-sustained second mode oscillations of flexible vortex generator (FVG) are produced to enhance the heat transfer in two-dimensional laminar flow regime. The purpose of this study is to determine the critical Reynolds number at which FVG becomes more efficient than rigid vortex generators (RVGs). Design/methodology/approach Ten cases were studied with different Reynolds numbers varying from 200 to 2,000. The Nusselt number and friction coefficients of the FVG cases are compared to those of RVG and empty channel at the same Reynolds numbers. Findings For Reynolds numbers higher than 800, the FVG oscillates in the second mode causing a significant increase in the velocity gradients generating unsteady coherent flow structures. The highest performance was obtained at the maximum Reynolds number for which the global Nusselt number is improved by 35.3 and 41.4 per cent with respect to empty channel and rigid configuration, respectively. Moreover, the thermal enhancement factor corresponding to FVG is 72 per cent higher than that of RVG. Practical implications The results obtained here can help in the design of novel multifunctional heat exchangers/reactors by using flexible tabs and inserts instead of rigid ones. Originality/value The originality of this paper is the use of second mode oscillations of FVG to enhance heat transfer in laminar flow regime.


Sign in / Sign up

Export Citation Format

Share Document