Heat transfer enhancement using second mode self-oscillating structures

2019 ◽  
Vol 30 (7) ◽  
pp. 3827-3842
Author(s):  
Samer Ali ◽  
Zein Alabidin Shami ◽  
Ali Badran ◽  
Charbel Habchi

Purpose In this paper, self-sustained second mode oscillations of flexible vortex generator (FVG) are produced to enhance the heat transfer in two-dimensional laminar flow regime. The purpose of this study is to determine the critical Reynolds number at which FVG becomes more efficient than rigid vortex generators (RVGs). Design/methodology/approach Ten cases were studied with different Reynolds numbers varying from 200 to 2,000. The Nusselt number and friction coefficients of the FVG cases are compared to those of RVG and empty channel at the same Reynolds numbers. Findings For Reynolds numbers higher than 800, the FVG oscillates in the second mode causing a significant increase in the velocity gradients generating unsteady coherent flow structures. The highest performance was obtained at the maximum Reynolds number for which the global Nusselt number is improved by 35.3 and 41.4 per cent with respect to empty channel and rigid configuration, respectively. Moreover, the thermal enhancement factor corresponding to FVG is 72 per cent higher than that of RVG. Practical implications The results obtained here can help in the design of novel multifunctional heat exchangers/reactors by using flexible tabs and inserts instead of rigid ones. Originality/value The originality of this paper is the use of second mode oscillations of FVG to enhance heat transfer in laminar flow regime.

Author(s):  
Shashank Ranjan Chaurasia ◽  
R. M. Sarviya

Abstract The experimental analysis is arranged to evaluate the thermal hydraulic performance on nanofluid flow in helical screw insert with tube at a number of strips and different twist ratios in laminar flow regime. The single strip (SS) helical screw inserts are also compared with the double strip (DS) helical screw inserts. The heat transfer enhancement is achieved with nanofluid flow in double strip as compared with single strip helical screw insert at decreased values of twist ratio and increased values of Reynolds number. A maximum enhancement of 421% is found in the value of Nusselt number with double strip helical screw insert at twist ratio of 1.5 and low value of Reynolds number in the flow of nanofluid than water in plain tube. The common correlations of Nusselt number and friction factor are generated. The thermal performance factor (TPF) is achieved at a maximum value of 2.42 with double strip than single strip helical screw inserts at twist ratio of 2.5 and low value of Reynolds number. The present analysis shows suitability of the double strip helical screw insert to enable miniaturization of the heat exchangers. A compact heat exchanger decreases the size of thermal application such as solar water heater, solar power plants, electronic cooling systems, radiator, etc., which could save environment by pollution reduction with utilization of energy.


2021 ◽  
Author(s):  
Matthew Searle ◽  
Arnab Roy ◽  
James Black ◽  
Doug Straub ◽  
Sridharan Ramesh

Abstract In this paper, experimental and numerical investigations of three variants of internal cooling configurations — dimples only, ribs only and ribs with dimples have been explored at process conditions (96°C and 207bar) with sCO2 as the coolant. The designs were chosen based on a review of advanced internal cooling features typically used for air-breathing gas turbines. The experimental study described in this paper utilizes additively manufactured square channels with the cooling features over a range of Reynolds number from 80,000 to 250,000. Nusselt number is calculated in the experiments utilizing the Wilson Plot method and three heat transfer characteristics — augmentation in Nusselt number, friction factor and overall Thermal Performance Factor (TPF) are reported. To explore the effect of surface roughness introduced due to additive manufacturing, two baseline channel flow cases are considered — a conventional smooth tube and an additively manufactured square tube. A companion computational fluid dynamics (CFD) simulation is also performed for the corresponding cooling configurations reported in the experiments using the Reynolds Averaged Navier Stokes (RANS) based turbulence model. Both experimental and computational results show increasing Nusselt number augmentation as higher Reynolds numbers are approached, whereas prior work on internal cooling of air-breathing gas turbines predict a decay in the heat transfer enhancement as Reynolds number increases. Comparing cooling features, it is observed that the “ribs only” and “ribs with dimples” configurations exhibit higher Nusselt number augmentation at all Reynolds numbers compared to the “dimples only” and the “no features” configurations. However, the frictional losses are almost an order of magnitude higher in presence of ribs.


Author(s):  
Ali Rahimi Gheynani ◽  
Omid Ali Akbari ◽  
Majid Zarringhalam ◽  
Gholamreza Ahmadi Sheikh Shabani ◽  
Abdulwahab A. Alnaqi ◽  
...  

Purpose Although many studies have been conducted on the nanofluid flow in microtubes, this paper, for the first time, aims to investigate the effects of nanoparticle diameter and concentration on the velocity and temperature fields of turbulent non-Newtonian Carboxymethylcellulose (CMC)/copper oxide (CuO) nanofluid in a three-dimensional microtube. Modeling has been done using low- and high-Reynolds turbulent models. CMC/CuO was modeled using power law non-Newtonian model. The authors obtained interesting results, which can be helpful for engineers and researchers that work on cooling of electronic devices such as LED, VLSI circuits and MEMS, as well as similar devices. Design/methodology/approach Present numerical simulation was performed with finite volume method. For obtaining higher accuracy in the numerical solving procedure, second-order upwind discretization and SIMPLEC algorithm were used. For all Reynolds numbers and volume fractions, a maximum residual of 10−6 is considered for saving computer memory usage and the time for the numerical solving procedure. Findings In constant Reynolds number and by decreasing the diameter of nanoparticles, the convection heat transfer coefficient increases. In Reynolds numbers of 2,500, 4,500 and 6,000, using nanoparticles with the diameter of 25 nm compared with 50 nm causes 0.34 per cent enhancement of convection heat transfer coefficient and Nusselt number. Also, in Reynolds number of 2,500, by increasing the concentration of nanoparticles with the diameter of 25 nm from 0.5 to 1 per cent, the average Nusselt number increases by almost 0.1 per cent. Similarly, In Reynolds numbers of 4,500 and 6,000, the average Nusselt number increases by 1.8 per cent. Research limitations/implications The numerical simulation was carried out for three nanoparticle diameters of 25, 50 and 100 nm with three Reynolds numbers of 2,500, 4,500 and 6,000. Constant heat flux is on the channel, and the inlet fluid becomes heated and exists from it. Practical implications The authors obtained interesting results, which can be helpful for engineers and researchers that work on cooling of electronic devices such as LED, VLSI circuits and MEMS, as well as similar devices. Originality/value This manuscript is an original work, has not been published and is not under consideration for publication elsewhere. About the competing interests, the authors declare that they have no competing interests.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Xuan Zhang ◽  
Taocheng Zhao ◽  
Suchen Wu ◽  
Feng Yao

Although roughness is negligible for laminar flow through tubes in classic fluid mechanics, the surface roughness may play an important role in microscale fluid flow due to the large ratio of surface area to volume. To further verify the influence of rough surfaces on microscale liquid flow and heat transfer, a performance test system of heat transfer and liquid flow was designed and built, and a series of experimental examinations are conducted, in which the microchannel material is stainless steel and the working medium is methanol. The results indicate that the surface roughness plays a significant role in the process of laminar flow and heat transfer in microchannels. In microchannels with roughness characteristics, the Poiseuille number of liquid laminar flow relies not only on the cross section shape of the rough microchannels but also on the Reynolds number of liquid flow. The Poiseuille number of liquid laminar flow in rough microchannels increases with increasing Reynolds number. In addition, the Nusselt number of liquid laminar heat transfer is related not only to the cross section shape of a rough microchannel but also to the Reynolds number of liquid flow, and the Nusselt number increases with increasing Reynolds number.


Author(s):  
S. Gilchrist ◽  
C. Y. Ching ◽  
D. Ewing

An experimental investigation was performed to determine the effect that surface roughness has on the heat transfer in an axial Taylor-Couette flow. The experiments were performed using an inner rotating cylinder in a stationary water jacket for Taylor numbers of 106 to 5×107 and axial Reynolds numbers of 900 to 2100. Experiments were performed for a smooth inner cylinder, a cylinder with two-dimensional rib roughness and a cylinder with three-dimensional cubic protrusions. The heat transfer results for the smooth cylinder were in good agreement with existing experimental data. The change in the Nusselt number was relatively independent of the axial Reynolds number for the cylinder with rib roughness. This result was similar to the smooth wall case but the heat transfer was enhanced by 5% to 40% over the Taylor number range. The Nusselt number for the cylinder with cubic protrusions exhibited an axial Reynolds number dependence. For a low axial Reynolds number of 980, the Nusselt number increased with the Taylor number in a similar way to the other test cylinders. At higher axial Reynolds numbers, the heat transfer was initially independent of the Taylor number before increasing with Taylor number similar to the lower Reynolds number case. In this higher axial Reynolds number case the heat transfer was enhanced by up to 100% at the lowest Taylor number of 1×106 and by approximately 35% at the highest Taylor number of 5×107.


Author(s):  
Kyo Sik Hwang ◽  
Hyo Jun Ha ◽  
Seung Hyun Lee ◽  
Hyun Jin Kim ◽  
Seok Pil Jang ◽  
...  

This paper is to investigate flow and convective heat transfer characteristics of nanofluids with various shapes of Al2O3 nanoparticles flowing through a uniformly heated circular tube under fully developed laminar flow regime. For the purpose, Al2O3 nanofluids of 0.3 Vol.% with sphere, rod, platelet, blade and brick shapes are manufactured by a two-step method. Zeta potential as well as TEM image is experimentally obtained to examine suspension and dispersion characteristics of Al2O3 nanofluids with various shapes. To investigate flow characteristics, the pressure drop of Al2O3 nanofluids with various shapes are measured. In order to investigate convective heat transfer characteristics, the effective thermal conductivities of Al2O3 nanofluids with various shapes, the temperature distribution at the tube surface and the mean temperature of nanofluids at the inlet are measured, respectively. Based on the experimental results, the convective heat transfer coefficient of Al2O3 nanofluids with various shapes is compared with that of pure water and the thermal conductivity of Al2O3 nanofluids with various shapes. Thus, the effect of nanoparticles shape on the flow and convective heat transfer characteristics flowing through a uniformly heated circular tube under fully developed laminar flow regime is experimentally investigated.


Author(s):  
Ravi Shankar Kumar, Et. al.

The heat emission from heat exchangers is of great importance for the efficient and economical operation of industrial machines. The main focus of the study is to increase the overall heat transfer rate and optimize the design. And the Nusselt number and Reynolds number calculated using ANSYS Fluent. And the helical screw inserts save energy. A CFD study of the helical band insert with different twist ratio in the tube was performed for laminar flow as a heat transfer amplifier using commercial software. This use increased the rate of heat transfer with a significant increase in pressure drop. In this study, 3 types of helical belts were used to add value to HTC. The value of the friction factor increases with increasing Reynolds number. The value of HTC increases as the Reynolds number increases. The HTC goes up to 1562.5,1666,1886.79 in all three cases. The Nusselt number and Reynold number increase to 94.33 and 1997.5, respectively. In case 3 The temperature of the pipe wall is reduced if a pipe with an insert is used, which means less irreversibility and greater heat transfer properties. It has a relatively higher and lower temperature spiral profile in the pipe wall as the insert twist.


2000 ◽  
Vol 123 (2) ◽  
pp. 347-358 ◽  
Author(s):  
P. Bagchi ◽  
M. Y. Ha ◽  
S. Balachandar

Direct numerical solution for flow and heat transfer past a sphere in a uniform flow is obtained using an accurate and efficient Fourier-Chebyshev spectral collocation method for Reynolds numbers up to 500. We investigate the flow and temperature fields over a range of Reynolds numbers, showing steady and axisymmetric flow when the Reynolds number is less than 210, steady and nonaxisymmetric flow without vortex shedding when the Reynolds number is between 210 and 270, and unsteady three-dimensional flow with vortex shedding when the Reynolds number is above 270. Results from three-dimensional simulation are compared with the corresponding axisymmetric simulations for Re>210 in order to see the effect of unsteadiness and three-dimensionality on heat transfer past a sphere. The local Nusselt number distribution obtained from the 3D simulation shows big differences in the wake region compared with axisymmetric one, when there exists strong vortex shedding in the wake. But the differences in surface-average Nusselt number between axisymmetric and three-dimensional simulations are small owing to the smaller surface area associated with the base region. The shedding process is observed to be dominantly one-sided and as a result axisymmetry of the surface heat transfer is broken even after a time-average. The one-sided shedding also results in a time-averaged mean lift force on the sphere.


Sign in / Sign up

Export Citation Format

Share Document