Impact of point source on fissured poroelastic medium: Green’s function approach

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shishir Gupta ◽  
Soumik Das ◽  
Rachaita Dutta

Purpose The purpose of this paper is to investigate the mathematical model comprising a heterogeneous fluid-saturated fissured porous layer overlying a non-homogeneous anisotropic fluid-saturated porous half-space without fissures. The influence of point source on horizontally polarized shear-wave (SH-wave) propagation has been studied intensely. Design/methodology/approach Techniques of Green’s function and Fourier transform are applied to acquire displacement components, and with the help of boundary conditions, complex frequency equation has been constructed. Findings Complex frequency relation leads to two distinct equations featuring dispersion and attenuation properties of SH-wave in a heterogeneous fissured porous medium. Using MATHEMATICA software, dispersion and damping curves are sketched to disclose the effects of heterogeneity parameters associated with both media, parameters related to rigidity and density of single porous half-space, attenuation coefficient, wave velocity, total porosity, volume fraction of fissures and anisotropy. The fact of obtaining classical Love wave equation by introducing several particular conditions establishes the validation of the considered model. Originality/value To the best of the authors’ knowledge, effect of point source on SH-wave propagating in porous layer containing macro as well as micro porosity is not analysed so far, although theory of fissured poroelasticity itself has vast applications in real life and impact of point source not only enhances the importance of fissured porous materials but also opens a new area for future research.

2012 ◽  
Vol 28 (1) ◽  
pp. 143-151 ◽  
Author(s):  
H. Qi ◽  
J. Yang ◽  
Y. Shi ◽  
J. Y. Tian

ABSTRACTComplex method and Green's function method are used here to investigate the dynamic analysis for circular inclusion near interfacial crack impacted by SH-wave in bi-material half-space. Firstly, the displacement expression of the scattering wave was constructed which satisfied the free boundary conditions, then Green's function could be constructed, which was an essential solution to the displacement field for an elastic right-angle space with a circular inclusion impacted by out-plane harmonic line source loading at vertical surface. Secondly, crack was made out with “crack-division” technique. Meanwhile, the bi-material media was divided into two parts along the bi-material interface based on the idea of interface “conjunction”, and then the vertical surfaces of the two right-angle spaces were loaded with undetermined anti-plane forces in order to satisfy displacement continuity and stress continuity conditions at linking section. So a series of algebraic equations for determining the unknown forces could be set up through continuity conditions and the Green's function. Finally, some examples and results for dynamic stress concentration factor of the circular elastic inclusion were given. Numerical results show that they are influenced by interfacial crack, the incident wave number and the free boundary in some degree.


2007 ◽  
Vol 348-349 ◽  
pp. 861-864 ◽  
Author(s):  
Zai Lin Yang ◽  
Zhi Gang Chen ◽  
Dian Kui Liu

Scattering of SH wave by an elastic half space with a circular cavity and a crack in any position and direction is studied with Green’s function, complex function and multi-polar coordinate method. First, a suitable Green’s function is constructed, which is the fundamental solution of the displacement field for a half space with a circular cavity impacted by an out-plane harmonic line source loading at an arbitrary point in half space. Then a crack in any position and direction is constructed by means of crack-division in half space. Finally the displacement field and stress field are established in the case of coexistence of circular cavity and crack, and the expression of dynamic stress intensity factor (DSIF) at the tip of crack is given. According to numerical examples, the influences of different parameters on DSIF are discussed.


1998 ◽  
Vol 14 (4) ◽  
pp. 161-172
Author(s):  
Tsung-Jen Teng ◽  
Juin-Fu Chai ◽  
Chau-Shioung Yeh

ABSTRACTIn this paper, the recursive T-matrix formalism is developed to determine the dynamic Green's function for SH-wave in the multi-dipping layers with arbitrary shape embedded in a half-space. In each layer, the wave field generated by a harmonic line load can be separated into two parts: the source term and the complementary part. The source term is exactly the Green's function for SH-wave in two-dimensional half-space, and the complementary part which causes the SH-wave to satisfy the boundary conditions at the interface is determined by the wave function expansion method. Using the polar coordinates, the basis functions are constructed by Bessel typed cylindrical functions, and their orthogonality conditions at the corresponding interfaces can be derived by means of Betti's third identity. Applying the conditions of continuity at the interface, the recursive T-matrix formalism is developed for determining the expansion coefficients of the complementary part from the associated source dependent constants.


2009 ◽  
Vol 417-418 ◽  
pp. 713-716
Author(s):  
Zai Lin Yang ◽  
Mei Juan Xu ◽  
Bai Tao Sun

The dynamic response of a circular lining structure and multiple cracks in an elastic half space while bearing impact loading is studied in this paper. This problem can be seen as the problem of defending of blast. The methods of Green's function, complex function and multi-polar coordinates are used here. First, the scattering wave which satisfies the condition of stress free on the ground surface of half-space containing a shallow-embedded circular lining structure impacted by incident SH-wave is constructed based on the symmetry of SH-wave scattering and the method of multi-polar coordinates system. Then a crack or multiple cracks in any position and direction can be constructed by Green's function and means of crack-division in half space. Finally the displacement field and stress field are established in the case of coexistence of circular lining structure and cracks, and the expression of dynamic stress intensity factor (DSIF) at the tip of crack is given. The interaction of inclusion and two cracks is chosen as numerical examples finally. According to nu-merical examples, the influences of different parameters on DSIF are discussed.


2008 ◽  
Vol 385-387 ◽  
pp. 157-160 ◽  
Author(s):  
Bai Tao Sun ◽  
Pei Lei Yan ◽  
Zai Lin Yang

Based on Green’s function, complex function and multi-polar coordinate system, the far field solution of SH wave scattered by an elastic half space with a circular cavity and a crack at an arbitrary position and orientation is investigated. First, a suitable Green’s function is constructed, which is the fundamental solution of the displacement field for a half space with a circular cavity subjected to an out-plane time-harmonic line force at an arbitrary position in half space. Second, by means of crack-division technique, a crack with any location and orientation can be constructed in the region of the half space. The displacement field and stress field are established in the situation of coexistence of circular cavity and crack. At last expressions of far field, such as displacement mode of scattering wave are deduced. Some examples and numerical results are illustrated. The influences of the combination of different media parameters on solutions of far field are discussed.


2011 ◽  
Vol 488-489 ◽  
pp. 440-443
Author(s):  
Zai Lin Yang ◽  
Hua Nan Xu ◽  
Mei Juan Xu ◽  
Bai Tao Sun

The surface displacement of a circular lining structure and multiple cracks in an elastic half space by incident SH-wave is studied in this paper based on the methods of Green's function, complex function and multi-polar coordinates. Firstly, we construct a suitable Green’s function which indicates a fundamental solution to the displacement field for an elastic half space possessing a circular lining structure and cracks while bearing out-plane harmonic line loads at arbitrary point. Then using the method of crack-division, a crack is created. Thus expressions of displacement and stress field are established at the existence of the structure and the cracks. Finally, the interaction of inclusion and two cracks is chosen as numerical examples and the influences of different parameters on the surface displacement are discussed.


2006 ◽  
Vol 324-325 ◽  
pp. 679-682 ◽  
Author(s):  
Zai Lin Yang ◽  
Dian Kui Liu ◽  
Xiao Lang Lv

Scattering of SH wave by a crack is studied in elastic half space with a removable rigid cylindrical inclusion by Green’s function, complex function and moving coordinate method. In half space, firstly the scattering wave function of removable rigid cylindrical inclusion is constructed; next a suitable Green’s function is solved for present problem, then using crack-division to make a crack. Thus the solution of problem can be obtained. Numerical examples are provided and discussed.


Sign in / Sign up

Export Citation Format

Share Document