A review on indoor environmental quality (IEQ) and energy consumption in building based on occupant behavior

Facilities ◽  
2017 ◽  
Vol 35 (11/12) ◽  
pp. 684-695 ◽  
Author(s):  
Iman Asadi ◽  
Norhayati Mahyuddin ◽  
Payam Shafigh

Purpose The purpose of this paper is to review the concept of occupant behavior and its relation with indoor environmental quality (IEQ) and building energy consumption. The behavior is referred to any direct or indirect action, which is selected by an occupant to manage the unpleasant indoor environmental conditions. Thermal comfort, indoor air quality, aural comfort and visual comfort are the key factors of IEQ evaluation. Human behavior significantly interacts with energy consumption in buildings. Design/methodology/approach Each IEQ parameter was reviewed separately and the overall IEQ acceptance was considered. In addition, this paper reviews the methods that were used to measure and simulate the IEQ factors, energy consumption and human behavior. Finally, the lack of knowledge in this field is based on the review demonstrated. Findings Most studies considered one or two IEQ factors to evaluate IEQ acceptance in buildings. Further, weakness of simulating all IEQ factors at the same time is the deficiency of IEQ simulation, based on reviews. In the case of occupant behavior simulation, the uncertainly of human psychological parameter is a drawback to predict behavior. Originality/value Energy consumption, occupant health and productivity are related to IEQ. Human behavior affects building energy consumption directly. Simulation software and methods can predict IEQ factors and human behavior. Therefore, reviewing the existing studies is critical to find new methods for measuring and simulating IEQ, energy consumption and human behavior in buildings.

2021 ◽  
Vol 45 ◽  
pp. 101212
Author(s):  
Shuo Chen ◽  
Guomin Zhang ◽  
Xiaobo Xia ◽  
Yixing Chen ◽  
Sujeeva Setunge ◽  
...  

2013 ◽  
Vol 409-410 ◽  
pp. 606-611 ◽  
Author(s):  
Zhen Yu ◽  
Wei Lin Zhang ◽  
Ting Yong Fang

Using the energy consumption simulation software to research the HVAC in fall air conditioning mode, different building orientation and window-wall ratio of the office building energy consumption. The study found that the heating energy consumption, air-conditioning energy consumption and total energy consumption is gradually increased with the increase of the window-wall ratio under the same orientation. The result provides some reference for public buildings in setting of building orientation and window-wall ratio.


2017 ◽  
Vol 204 ◽  
pp. 1431-1443 ◽  
Author(s):  
Jimin Kim ◽  
Taehoon Hong ◽  
Jaemin Jeong ◽  
Myeonghwi Lee ◽  
Minhyun Lee ◽  
...  

2020 ◽  
Vol 38 (5) ◽  
pp. 785-795 ◽  
Author(s):  
Kele Zhang

PurposeWith the problem of environment and energy becoming prominent, energy conservation and emission reduction have received more attention. In the using process, buildings not only have the inherent energy consumption but also have the energy consumption of equipment that is installed for improving the indoor environment. This study aims to investigate how to reduce the energy consumption of buildings through utilizing natural resources.Design/methodology/approachThis paper briefly introduces three objective functions in the building energy-saving model: building energy consumption, natural lighting and natural ventilation. Genetic algorithm was used to optimize the building parameters to achieve energy conservation and comfort improvement. Then a two-story rental building was analyzed.FindingsThe genetic algorithm converged to Pareto optimal solution set after 10,000 times of iterations, which took 61024 s. The lowest energy consumption of the scheme that was selected from the 70 optimal solutions was 5580 W/(m2K), the lighting coefficient was 5.56% and Pressure Difference Pascal Hours (PDPH) was 6453 h; compared with the initial building parameters, the building energy consumption reduced by 3.40%, the lighting coefficient increased by 11.65% and PDPH increased by 9.54%.Originality/valueIn short, the genetic algorithm can effectively optimize the energy-saving parameters of buildings.


2015 ◽  
Vol 74 (4) ◽  
Author(s):  
Atefeh Mohammadpour ◽  
Mohammad Mottahedi ◽  
Shideh Shams Amiri ◽  
Somayeh Asadi ◽  
David Riley ◽  
...  

Building energy modeling is essential to estimate energy consumption of buildings. Predicting building energy consumption benefits the owners, designers, and facility managers by enabling them to have an overview of building energy consumption and can help them to determine building energy performance during the design phase. This paper focuses on two different shapes of commercial building, H and rectangle to estimate energy consumption in buildings in three different climate zones, cold, hot-humid, and mixed-humid. To address this, DOE-2 building simulation software was used to build and simulate individual commercial building configurations that were generated using Monte Carlo simulation techniques. Ten thousand simulations for each building shape and climate zone were conducted to develop a comprehensive dataset covering the full range of design parameters. 


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Zou Huifen ◽  
Yang Fuhua ◽  
Zhang Qian

Wind angles affect building’s natural ventilation and also energy consumption of the building. In winter, the wind direction in the outdoor environment will affect heat loss of the building, while in summer the change of wind direction and speed in the outdoor environment will affect the building’s ventilation and indoor air circulation. So, making a good deal with the issue of the angle between local buildings and the dominant wind direction can effectively solve the winter and summer ventilation problems. Thereby, it can enhance the comfort of residential person, improve indoor air quality, solve heat gain and heat loss problems in winter and summer in the severely cold and cold regions, and reduce building energy consumption. The simulation software CFD and energy simulation software are used in the paper. South direction of the building is the prototype of the simulation. The angle between the direction of the building and the outdoor environment wind is changed sequentially. Energy consumption under different wind angle conditions is compared with each other. Combined with natural ventilation under various wind angles, the paper gives the best recommended solution of building direction in Shenyang.


2011 ◽  
Vol 71-78 ◽  
pp. 156-159 ◽  
Author(s):  
Qing Liang ◽  
Jian Fei Liu ◽  
Jing Liu ◽  
Gang Xu

The building energy consumption associated with the external wall insulation for different orientations and different exterior finishes has been evaluated using the simulation software EnergyPlus. The results suggest that in certain condition the thermal resistance of the external wall and the absorptance of the exterior finish should be high for heating dominated climate or room, while both of them should be low for cooling dominated climate or room for saving energy. Besides, it has different annual electricity savings for different external wall orientations at the same thickness of thermal insulation, so the insulation should be priority used for the external wall which has the largest saving potential.


2019 ◽  
Vol 111 ◽  
pp. 04045
Author(s):  
Marko G. Ignjatović ◽  
Bratislav D. Blagojević ◽  
Mirko M. Stojiljković ◽  
Aleksandar S. Anđelković ◽  
Milena B. Blagojević ◽  
...  

One of the possible ways to improve balance between building energy consumption and occupant thermal comfort in existing buildings is to use simulation-assisted operation of HVAC systems. Simulation-assisted operation can be formulated as a type of operation that implements knowledge of future disturbance acting on the building and that enables operating the systems in such a way to fulfill given goals, which in nature can often be contradictory. The most important future conditions on building energy consumption are weather parameters and occupant behavior and expectations of thermal environment. In order to achieve this type of operation, optimization methods must be applied. Methodology to create HVAC system operation strategies on a daily basis is presented. Methodology is based on using building energy performance simulation software EnergyPlus, available weather data, global sensitivity analysis, and custom developed software with particle swarm optimization method applied over the moving horizon. Global sensitivity analysis is used in order to reduce number of independent variables for the optimization process. The methodology is applied to office part of real combined-type building located in Niš, Serbia. Use of sensitivity analysis shows that the reduced number of independent variables for the optimization would lead to similar thermal comfort and energy consumption, with significant computer runtime reduction.


2011 ◽  
Vol 43 (6) ◽  
pp. 1409-1417 ◽  
Author(s):  
Zhun Yu ◽  
Benjamin C.M. Fung ◽  
Fariborz Haghighat ◽  
Hiroshi Yoshino ◽  
Edward Morofsky

Sign in / Sign up

Export Citation Format

Share Document