Parametric Analysis of Building Elements on Building Energy Use

2015 ◽  
Vol 74 (4) ◽  
Author(s):  
Atefeh Mohammadpour ◽  
Mohammad Mottahedi ◽  
Shideh Shams Amiri ◽  
Somayeh Asadi ◽  
David Riley ◽  
...  

Building energy modeling is essential to estimate energy consumption of buildings. Predicting building energy consumption benefits the owners, designers, and facility managers by enabling them to have an overview of building energy consumption and can help them to determine building energy performance during the design phase. This paper focuses on two different shapes of commercial building, H and rectangle to estimate energy consumption in buildings in three different climate zones, cold, hot-humid, and mixed-humid. To address this, DOE-2 building simulation software was used to build and simulate individual commercial building configurations that were generated using Monte Carlo simulation techniques. Ten thousand simulations for each building shape and climate zone were conducted to develop a comprehensive dataset covering the full range of design parameters. 

2019 ◽  
Vol 111 ◽  
pp. 04045
Author(s):  
Marko G. Ignjatović ◽  
Bratislav D. Blagojević ◽  
Mirko M. Stojiljković ◽  
Aleksandar S. Anđelković ◽  
Milena B. Blagojević ◽  
...  

One of the possible ways to improve balance between building energy consumption and occupant thermal comfort in existing buildings is to use simulation-assisted operation of HVAC systems. Simulation-assisted operation can be formulated as a type of operation that implements knowledge of future disturbance acting on the building and that enables operating the systems in such a way to fulfill given goals, which in nature can often be contradictory. The most important future conditions on building energy consumption are weather parameters and occupant behavior and expectations of thermal environment. In order to achieve this type of operation, optimization methods must be applied. Methodology to create HVAC system operation strategies on a daily basis is presented. Methodology is based on using building energy performance simulation software EnergyPlus, available weather data, global sensitivity analysis, and custom developed software with particle swarm optimization method applied over the moving horizon. Global sensitivity analysis is used in order to reduce number of independent variables for the optimization process. The methodology is applied to office part of real combined-type building located in Niš, Serbia. Use of sensitivity analysis shows that the reduced number of independent variables for the optimization would lead to similar thermal comfort and energy consumption, with significant computer runtime reduction.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4046 ◽  
Author(s):  
Sooyoun Cho ◽  
Jeehang Lee ◽  
Jumi Baek ◽  
Gi-Seok Kim ◽  
Seung-Bok Leigh

Although the latest energy-efficient buildings use a large number of sensors and measuring instruments to predict consumption more accurately, it is generally not possible to identify which data are the most valuable or key for analysis among the tens of thousands of data points. This study selected the electric energy as a subset of total building energy consumption because it accounts for more than 65% of the total building energy consumption, and identified the variables that contribute to electric energy use. However, this study aimed to confirm data from a building using clustering in machine learning, instead of a calculation method from engineering simulation, to examine the variables that were identified and determine whether these variables had a strong correlation with energy consumption. Three different methods confirmed that the major variables related to electric energy consumption were significant. This research has significance because it was able to identify the factors in electric energy, accounting for more than half of the total building energy consumption, that had a major effect on energy consumption and revealed that these key variables alone, not the default values of many different items in simulation analysis, can ensure the reliable prediction of energy consumption.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1274-1277
Author(s):  
Chong Chao Pan ◽  
Zheng Qian Feng

Building energy consumption has become large energy consumption in our country. In order to realize the full range of buildings energy-saving, this paper designed a building energy monitoring system and which can effective measure, monitor, control and regulate each energy equipment and systems within the building. It makes a large number of dispersed energy data sort, optimization, control and reasonable allocation by combining networking technology and cloud computing technology, forming the construction of community energy overall control, optimization, service and redistribution system. Finally realizes the monitoring, control of buildings energy consumption, achieving the purpose of saving the energy.


2013 ◽  
Vol 409-410 ◽  
pp. 606-611 ◽  
Author(s):  
Zhen Yu ◽  
Wei Lin Zhang ◽  
Ting Yong Fang

Using the energy consumption simulation software to research the HVAC in fall air conditioning mode, different building orientation and window-wall ratio of the office building energy consumption. The study found that the heating energy consumption, air-conditioning energy consumption and total energy consumption is gradually increased with the increase of the window-wall ratio under the same orientation. The result provides some reference for public buildings in setting of building orientation and window-wall ratio.


Teknomekanik ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 30-35
Author(s):  
Andre Kurniawan ◽  
Nanang Qosim ◽  
Remon Lapisa ◽  
Zainal Abadi ◽  
Jasman Jasman

Energy consumption of a building is one of the biggest sources of energy use today. Green Building Comitte Indonesia (GBCI) has launched a concept of energy consumption saving in a nationally standard building. Audit Building energy audit is the way to know how actual building energy consumption is and find alternative solution to decrease energy consumption in order to fulfill the energy saving building criteria. Two types of HVAC systems will be run in the EnergyPlus simulation, split AC and central AC. The previous research proved that central AC is better than split AC system for energy saving in the building with 20 floors. The simulation results show that by using a certain energy system, a more efficient energy system will be achieved and can still maintain the comfort of the room at a temperature of 24 °C and relative humidity according to the Green Building Indonesia standard reference.


Author(s):  
Guanjing Lin ◽  
David E. Claridge

Commissioning services have proven successful in reducing building energy consumption, but the optimal energy performance obtained by commissioning may subsequently degrade. Automated Building Commissioning Analysis Tool (ABCAT), which combines a calibrated simulation with diagnostic techniques, is a simple and cost efficient tool that can help maintain the optimal building energy performance after building commissioning. It can continuously monitor whole building energy consumption, warn operation personnel when an HVAC system problem has increased energy consumption, and assist them in identifying the possible cause(s) of the problem. This paper presents the results of a retrospective implementation of ABCAT on five buildings, each of which has at least three years of post-commissioning daily energy consumption data, on the Texas A&M University campus. The methodology of ABCAT is reviewed and the implementation process of ABCAT on one building is specifically illustrated. Eighteen faults were detected in 15 building-years of consumption data with a defined fault detection standard. The causes of some of the detected faults are verified with historical documentation. The remaining fault diagnoses remain unconfirmed due to data quality issues and incomplete information on maintenance performed in the buildings.


2019 ◽  
Vol 111 ◽  
pp. 04027
Author(s):  
Aymeric Novel ◽  
Francis Allard ◽  
Patrice Joubert

Energy performance guarantee projects aim at achieving a given energy consumption in real life conditions. Building energy consumption monitoring during operation phase often reveals that energy consumption is sensitive to building spaces use and systems operation quality, especially for buildings with high energy performance characteristics [7]. Other investigations show the impact of building users’ behaviour on energy consumption [28]. These factors must be added to climate factors for energy consumption prediction during operation phase. Number of factors and possible combinations is very high. Building energy modeling is limited regarding this issue and metamodeling has been used to solve this problem [25]. We developed metamodels that are polynomial functions using D-optimal design of experiment (DOE) approach. Such metamodels can become operational tools to use in the IPMVP framework, associated with a M&V plan. This paper shows the application of the method on a cultural building that comprises numerous systems and usages. We obtain a reliable metamodel of the energy consumption as a function of climate, operation, and space use factors. which meets IPMVP [11] and ASHRAE Guideline 14 [3] modeling uncertainties criteria. We also determine the global uncertainty resulting from predictors’ uncertainties propagation and modelling uncertainty associated with the metamodel.


Buildings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 190
Author(s):  
Irina Susorova ◽  
Brent Stephens ◽  
Benjamin Skelton

A common envelope performance problem in buildings is thermal bridging through balcony slab connections, which can be improved with the use of commercially available thermal break products. Several prior studies have used simulation-based and/or hot box test apparatus approaches to quantify the likely effect of balcony thermal breaks on effective thermal resistance of building enclosures. However, in-situ measurements of thermal performance in real buildings remain limited to date. This study uses a combination of field measurements and models to investigate the effects of installing balcony thermal breaks on the interior surface temperatures, effective thermal resistance, and annual building energy consumption. For the field experiment, yearlong measurements were conducted on the 13th floor of a 14-story multi-family building in Chicago, IL, in which thermocouple sensors were embedded into eight balconies and their adjacent interior floor slabs just before concrete was poured to complete the construction. The eight balconies included four control balconies without thermal breaks and four thermally-broken balconies with a commercially available thermal break product installed. The experimental data were then combined with 2-D heat transfer modeling and whole building energy simulations to investigate the impacts of the thermal break product installation on the envelope thermal resistance and overall energy use in the case study building as well as in several more generic building designs with simpler geometries. The results demonstrate that although the balcony thermal breaks helped regulate interior slab temperatures and improved the effective thermal resistance of the curtain wall enclosure assembly by an estimated ~14% in the case study building, the predicted effect on annual energy consumption in all modeled building types was small (i.e., less than 2%). The results also highlight the importance of paying careful attention to envelope design details when using thermal break products and considering the use of thermal break products in combination with other energy efficiency strategies to achieve high performance enclosures.


Sign in / Sign up

Export Citation Format

Share Document