Large eddy simulation of an ignition sequence and the resulting steady combustion in a swirl-stabilized combustor using FGM-based tabulated chemistry

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Alain Fossi ◽  
Alain DeChamplain ◽  
Benjamin Akih-Kumgeh ◽  
Jeffrey Bergthorson

Purpose This study aims to deal with the large eddy simulation (LES) of an ignition sequence and the resulting steady combustion in a swirl-stabilized liquid-fueled combustor. Particular attention is paid to the ease of handling the numerical tool, the accuracy of the results and the reasonable computational cost involved. The primary aim of the study is to appraise the ability of the newly developed computational fluid dynamics (CFD) methodology to retrieve the spark-based flame kernel initiation, its propagation until the full ignition of the combustion chamber, the flame stabilization and the combustion processes governing the steady combustion regime. Design/methodology/approach The CFD model consists of an LES-based spray module coupled to a subgrid-scale ignition model to capture the flame kernel initiation and the early stage of the flame kernel growth, and a combustion model based on the mixture fraction-progress variable formulation in the line of the flamelet generated manifold (FGM) method to retrieve the subsequent flame propagation and combustion properties. The LES-spray module is based on an Eulerian-Lagrangian approach and includes a fully two-way coupling at each time step to account for the interactions between the liquid and the gaseous phases. The Wall-Adapting Local Eddy-viscosity (WALE) model is used for the flow field while the eddy diffusivity model is used for the scalar fluxes. The fuel is liquid kerosene, injected in the form of a polydisperse spray of droplets. The spray dynamics are tracked using the Lagrangian procedure, and the phase transition of droplets is calculated using a non-equilibrium evaporation model. The oxidation mechanism of the Jet A-1 surrogate is described through a reduced reaction mechanism derived from a detailed mechanism using a species sensitivity method. Findings By comparing the numerical results with a set of published data for a swirl-stabilized spray flame, the proposed CFD methodology is found capable of capturing the whole spark-based ignition sequence in a liquid-fueled combustion chamber and the main flame characteristics in the steady combustion regime with reasonable computing costs. Research limitations/implications The proposed CFD methodology simulates the whole ignition sequence, namely, the flame kernel initiation, its propagation to fully ignite the combustion chamber, and the global flame stabilization. Due to the lack of experimental ignition data on this liquid-fueled configuration, the ability of the proposed CFD methodology to accurately predict ignition timing was not quantitatively assessed. It would, therefore, be interesting to apply this CFD methodology to other configurations that have experimental ignition data, to quantitatively assess its ability to predict the ignition timing and the flame characteristics during the ignition sequence. Such further investigations will not only provide further validation of the proposed methodology but also will potentially identify its shortfalls for better improvement. Practical implications This CFD methodology is developed by customizing a commercial CFD code widely used in the industry. It is, therefore, directly applicable to practical configurations, and provides not only a relatively straightforward approach to predict an ignition sequence in liquid-fueled combustion chambers but also a robust way to predict the flame characteristics in the steady combustion regime as significant improvements are noticed on the prediction of slow species. Originality/value The incorporation of the subgrid ignition model paired with a combustion model based on tabulated chemistry allows reducing computational costs involved in the simulation of the ignition phase. The incorporation of the FGM-based tabulated chemistry provides a drastic reduction of computing resources with reasonable accuracy. The CFD methodology is developed using the platform of a commercial CFD code widely used in the industry for relatively straightforward applicability.

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Alexander Avdonin ◽  
Alireza Javareshkian ◽  
Wolfgang Polifke

Abstract This paper demonstrates that a large Eddy simulation (LES) combustion model based on tabulated chemistry and Eulerian stochastic fields can successfully describe the flame dynamics of a premixed turbulent swirl flame. The combustion chemistry is tabulated from one-dimensional burner-stabilized flamelet computations in dependence on progress variable and enthalpy. The progress variable allows to efficiently include a detailed reaction scheme, while the dependence on enthalpy describes the effect of heat losses on the reaction rate. The turbulence-chemistry interaction is modeled by eight Eulerian stochastic fields. An LES of a premixed swirl burner with a broadband velocity excitation is performed to investigate the flame dynamics, i.e., the response of heat release rate to upstream velocity perturbations. In particular, the flame impulse response and the flame transfer function (FTF) are identified from LES time series data. Simulation results for a range of power ratings are in good agreement with the experimental data.


Author(s):  
D. Mira ◽  
M. Vázquez ◽  
G. Houzeaux ◽  
S. Gövert ◽  
J. W. B. Kok ◽  
...  

The primary purpose of this study is to evaluate the ability of LES, with a turbulent combustion model based on steady flamelets, to predict the flame stabilization mechanisms in an industrial can combustor at full load conditions. The test case corresponds to the downscaled Siemens can combustor tested in the high pressure rig at the DLR. The effects of the wall temperature on the prediction capabilities of the codes is investigated by imposing several heat transfer conditions at the pilot and chamber walls. The codes used for this work are Alya and OpenFOAM, which are well established CFD codes in the fluid mechanics community. Prior to the simulation, results for 1-D laminar flames at the operating conditions of the combustor are compared with the detailed solutions. Subsequently, results from both codes at the mid-plane are compared against the experimental data available. Acceptable results are obtained for the axial velocity, while discrepancies are more evident for the mixture fraction and the temperature, particularly with Alya. However, both codes showed that the heat losses influence the size and length of the pilot and main flame.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
A. Andreini ◽  
C. Bianchini ◽  
A. Innocenti

The present study is devoted to verify current capabilities of Large Eddy Simulation (LES) methodology in the modeling of lean premixed flames in the typical turbulent combustion regime of Dry LowNOxgas turbine combustors. A relatively simple reactive test case, presenting all main aspects of turbulent combustion interaction and flame stabilization of gas turbine lean premixed combustors, was chosen as an affordable test to evaluate the feasibility of the technique also in more complex test cases. A comparison between LES and RANS modeling approach is performed in order to discuss modeling requirements, possible gains, and computational overloads associated with the former. Such comparison comprehends a sensitivity study to mesh refinement and combustion model characteristic constants, computational costs, and robustness of the approach. In order to expand the overview on different methods simulations were performed with both commercial and open-source codes switching from quasi-2D to fully 3D computations.


Author(s):  
B. Franzelli ◽  
A. Vié ◽  
B. Fiorina ◽  
N. Darabiha

Accurate characterization of swirled flames is a key point in the development of more efficient and safer aeronautical engines. The task is even more challenging for spray injection systems. On the one side, spray interacts with both turbulence and flame, eventually affecting the flame dynamics. On the other side, spray flame structure is highly complex due to equivalence ratio inhomogeneities caused by the evaporation process. Introducing detailed chemistry in numerical simulations, necessary for the prediction of flame stabilization, ignition and pollutant concentration, is then essential but extremely expensive in terms of CPU time. In this context, tabulated chemistry methods, expressly developed to account for detailed chemistry at a reduced computational cost in Large Eddy Simulation of turbulent gaseous flames, are attractive. The objective of this work is to propose a first computation of a swirled spray flame stabilized in an actual turbojet injection system using tabulated chemistry. A Large Eddy Simulation of an experimental benchmark, representative of an industrial swirl two-phase air/kerosene injection system, is performed using a standard tabulated chemistry method. The numerical results are compared to the experimental database in terms of mean and fluctuating axial velocity. The reactive two-phase flow is deeper investigated focusing on the flame structure and dynamics.


2016 ◽  
Vol 188 (9) ◽  
pp. 1472-1495 ◽  
Author(s):  
Katsuhiro Hiraoka ◽  
Yuki Minamoto ◽  
Masayasu Shimura ◽  
Yoshitsugu Naka ◽  
Naoya Fukushima ◽  
...  

2021 ◽  
pp. 111730
Author(s):  
J. Benajes ◽  
J.M. García-Oliver ◽  
J.M. Pastor ◽  
I. Olmeda ◽  
A. Both ◽  
...  

Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 65 ◽  
Author(s):  
Arne Heinrich ◽  
Guido Kuenne ◽  
Sebastian Ganter ◽  
Christian Hasse ◽  
Johannes Janicka

Combustion will play a major part in fulfilling the world’s energy demand in the next 20 years. Therefore, it is necessary to understand the fundamentals of the flame–wall interaction (FWI), which takes place in internal combustion engines or gas turbines. The FWI can increase heat losses, increase pollutant formations and lowers efficiencies. In this work, a Large Eddy Simulation combined with a tabulated chemistry approach is used to investigate the transient near wall behavior of a turbulent premixed stoichiometric methane flame. This sidewall quenching configuration is based on an experimental burner with non-homogeneous turbulence and an actively cooled wall. The burner was used in a previous study for validation purposes. The transient behavior of the movement of the flame tip is analyzed by categorizing it into three different scenarios: an upstream, a downstream and a jump-like upstream movement. The distributions of the wall heat flux, the quenching distance or the detachment of the maximum heat flux and the quenching point are strongly dependent on this movement. The highest heat fluxes appear mostly at the jump-like movement because the flame behaves locally like a head-on quenching flame.


Author(s):  
Florent Duchaine ◽  
Jérôme Dombard ◽  
Laurent Gicquel ◽  
Charlie Koupper

To study the effects of combustion chamber dynamics on a turbine stage aerodynamics and thermal loads, an integrated Large-Eddy Simulation of the FACTOR combustion chamber simulator along with its high pressure turbine stage is performed and compared to a standalone turbine stage computation operated under the same mean conditions. For this specific configuration, results illustrate that the aerodynamic expansion of the turbine stage is almost insensitive to the inlet turbulent conditions. However, the temperature distribution in the turbine passages as well as on the stator vane and rotor blade walls are highly impacted by these inlet conditions: underlying the importance of inlet conditions in turbine stage computations and the potential of integrated combustion chamber / turbine simulations in such a context.


Sign in / Sign up

Export Citation Format

Share Document