Investigation of laminar fluid flow and heat transfer of nanofluid in trapezoidal microchannel with different aspect ratios

Author(s):  
Hesam Bakhshi ◽  
Erfan Khodabandeh ◽  
Omidali Akbari ◽  
Davood Toghraie ◽  
Mohammad Joshaghani ◽  
...  

Purpose In the present study, laminar steady flow of nanofluid through a trapezoidal channel is studied by using of finite volume method. The main aim of this paper is to study the effect of changes in geometric parameters, including internal and external dimensions on the behavior of heat transfer and fluid flow. For each parameter, an optimum ratio will be presented. Design/methodology/approach The results showed that in a channel cell, changing any geometric parameter may affect the temperature and flow field, even though the volume of the channel is kept constant. For a relatively small hydraulic diameter, microchannels with different angles have a similar dimensionless heat flux, while channels with bigger dimensions show various values of dimensionless heat flux. By increasing the angles of trapezoidal microchannels, dimensionless heat flux per unit of volume increases. As a result, the maximum and minimum heat transfer rate occurs in a trapezoidal microchannel with 75° and 30 internal’s, respectively. In the study of dimensionless heat flux rate with hydraulic diameter variations, an optimum hydraulic diameter (Dh) was observed in which the heat transfer rate per unit volume attains maximum value. Findings This optimum state is predicted to happen at a side angle of 75° and hydraulic diameter of 290 µm. In addition, in trapezoidal microchannel with higher aspect ratio, dimensionless heat flux rate is lower. Changing side angles of the channels and pressure drop have the same effect on pressure drop. For a constant pressure drop, if changing the side angles causes an increase in the rectangular area of the channel cross-section and the effect of the sides are not felt by the fluid, then the dimensionless heat flux will increase. By increasing the internal aspect ratio (t_2/t_3), the amount of t_3 decreases, and consequently, the conduction resistance of the hot surface decreases. Originality/value The effects of geometry of the microchannel, including internal and external dimensions on the behavior of heat transfer and fluid flow for pressure ranges between 2 and 8 kPa.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohsen Javanmard ◽  
Mohammad Hasan Taheri ◽  
Nematollah Askari ◽  
Hakan F. Öztop ◽  
Nidal Abu-Hamdeh

Purpose The purpose of this paper is to investigate the hydromagnetic third-grade non-Newtonian fluid flow and heat transfer between two coaxial pipes with a variable radius ratio. Design/methodology/approach To solve the approximate nonlinear and linear problems with variable coefficients, a trial function was applied. Methods include collocation, least square and Galerkin that can be applied for obtaining these coefficients. Findings It is revealed that an increase of the non-Newtonian parameter, Hartmann number, and radius ratio leads to an augmentation of the absolute value of the dimensionless velocity, temperature, velocity gradient, and temperature gradient of about 10-60%. Further, the augmentation of Bi1 reduces the absolute value of the dimensionless temperature profile and dimensionless temperature gradient about three to four times; hence, the dimensionless heat transfer rate reduces. However, the growth of Bi2 has a contrary impact. Besides, the increase of Pr and Ec leads to an increase in the dimensionless temperature profile and dimensionless temperature gradient; therefore, the dimensionless heat transfer rate increases. Originality/value The convection heat transfer on the walls of the pipes is considered, and the nonlinear coupled momentum and energy equations are solved using the least squared method and collocation methods, respectively.


Author(s):  
X. Yu ◽  
C. Woodcock ◽  
Y. Wang ◽  
J. Plawsky ◽  
Y. Peles

In this paper we reported an advanced structure, the Piranha Pin Fin (PPF), for microchannel flow boiling. Fluid flow and heat transfer performance were evaluated in detail with HFE7000 as working fluid. Surface temperature, pressure drop, heat transfer coefficient and critical heat flux (CHF) were experimentally obtained and discussed. Furthermore, microchannels with different PPF geometrical configurations were investigated. At the same time, tests for different flow conditions were conducted and analyzed. It turned out that microchannel with PPF can realize high-heat flux dissipation with reasonable pressure drop. Both flow conditions and PPF configuration played important roles for both fluid flow and heat transfer performance. This study provided useful reference for further PPF design in microchannel for flow boiling.


2015 ◽  
Vol 25 (8) ◽  
pp. 1978-1999 ◽  
Author(s):  
Kailash Mohapatra ◽  
Dipti Prasad Mishra

Purpose – The purpose of this paper is to determine the heat transfer and fluid flow characteristics of an internally finned tube for different flow conditions. Design/methodology/approach – Numerical investigation have been performed by solving the conservation equations of mass, momentum, energy with two equation-based k-eps model to determine the wall temperature, outlet temperature and Nusselt number of an internally finned tube. Findings – It has been found from the numerically investigation that there exists an optimum fin height and fin number for maximum heat transfer. It was also found that the heat transfer in T-shaped fin was highest compared to other shape. The saw type fins had a higher heat transfer rate compared to the plane rectangular fins having same surface area and the heat transfer rate was increasing with teeth number. Keeping the surface area constant, the shape of the duct was changed from cylindrical to other shape and it was found that the heat transfer was highest for frustum shape compared to other shape. Practical implications – The present computations could be used to predict the heat transfer and fluid flow characteristics of an internal finned tube specifically used in chemical and power plants. Originality/value – The original contribution of the paper was in the use of the two equation-based k-eps turbulent model to predict the maximum heat transfer through optimum design of fins and duct.


2019 ◽  
Vol 29 (5) ◽  
pp. 1590-1605 ◽  
Author(s):  
Payam Hooshmand ◽  
Mohammad Bahrami ◽  
Navid Bagheri ◽  
Meysam Jamshidian ◽  
Emad Hasani Malekshah

Purpose This paper aims to investigate the two-dimensional numerical modeling of fluid flow and heat transfer in a fluid channel. Design/methodology/approach The channel is filled with the CuO-water nanofluid. The KKL model is used to estimate the dynamic viscosity and considering Brownian motion. On the other hand, the influence of CuO nanoparticles’ shapes on the heat transfer rate is taken account in the simulations. The channel is included with several active pipes with hot and cold temperatures. Furthermore, the external curved and sinusoidal walls have cold and hot temperatures, respectively. Findings Three different tilt angles are considered with similar boundary and operating conditions. The Rayleigh numbers, solid volume fraction of CuO nanoparticles in the pure water and the tilt angles are the governing parameters. Different cases studies, such as streamlines, heat transfer rate, local and total entropy generation and heatlines, are analysed under influences of these governing parameters. Originality/value The originality of this work is investigation of fluid flow, heat transfer and entropy generation within a nanofluid filled channel using FVM.


Author(s):  
Shian Li ◽  
Gongnan Xie ◽  
Bengt Sunden

Purpose – The employment of continuous ribs in a passage involves a noticeable pressure drop penalty, while other studies have shown that truncated ribs may provide a potential to reduce the pressure drop while keeping a significant heat transfer enhancement. The purpose of this paper is to perform computer-aided simulations of turbulent flow and heat transfer of a rectangular cooling passage with continuous or truncated 45-deg V-shaped ribs on opposite walls. Design/methodology/approach – Computational fluid dynamics technique is used to study the fluid flow and heat transfer characteristics in a three-dimensional rectangular passage with continuous and truncated V-shaped ribs. Findings – The inlet Reynolds number, based on the hydraulic diameter, is ranged from 12,000 to 60,000 and a low-Re k-e model is selected for the turbulent computations. The local flow structure and heat transfer in the internal cooling passages are presented and the thermal performances of the ribbed passages are compared. It is found that the passage with truncated V-shaped ribs on opposite walls provides nearly equivalent heat transfer enhancement with a lower (about 17 percent at high Reynolds number of 60,000) pressure loss compared to a passage with continuous V-shaped ribs or continuous transversal ribs. Research limitations/implications – The fluid is incompressible with constant thermophysical properties and the flow is steady. The passage is stationary. Practical implications – New and additional data will be helpful in the design of ribbed passages to achieve a good thermal performance. Originality/value – The results imply that truncated V-shaped ribs are very effective in improving the thermal performance and thus are suggested to be applied in gas turbine blade internal cooling, especially at high velocity or Reynolds number.


Author(s):  
Minh Tuan Nguyen ◽  
Abdelraheem M. Aly ◽  
Sang-Wook Lee

Purpose This paper aims to conduct numerical simulations of unsteady natural/mixed convection in a cavity with fixed and moving rigid bodies and different boundary conditions using the incompressible smoothed particle hydrodynamics (ISPH) method. Design/methodology/approach In the ISPH method, the pressure evaluation is stabilized by including both of divergence of velocity and density invariance in solving pressure Poisson equation. The authors prevented the particles anisotropic distributions by using the shifting technique. Findings The proposed ISPH method exhibited good performance in natural/mixed convection in a cavity with fixed, moving and free-falling rigid body. In natural convection, the authors investigated the effects of an inner sloshing baffle as well as fixed and moving circular cylinders on the heat transfer and fluid flow. The heated baffle has higher effects on the heat transfer rate compared to a cooled baffle. In the mixed convection, a free-falling circular cylinder over a free surface cavity and heat transfer in the presence of a circular cylinder in a lid-driven cavity are simulated. Fixed or moving rigid body in a cavity results in considerable effects on the heat transfer rate and fluid flow. Originality/value The authors conducted numerical simulations of unsteady natural/mixed convection in a cavity with fixed and moving rigid bodies and different boundary conditions using the ISPH method.


2019 ◽  
Vol 29 (8) ◽  
pp. 2977-2992 ◽  
Author(s):  
Muhammad Ijaz Khan ◽  
Sumaira Qayyum ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi

Purpose The purpose of this paper is to analyze the Sutterby fluid flow by a rotating disk with homogeneous-heterogeneous reactions. Inspection of heat transfer is through Cattaneo–Christov model. Stratification effect is also considered. Design/methodology/approach Nonlinear equations are solved by the homotopy technique. Findings Sutterby fluid flow by rotating disk is not considered yet. Here the authors intend to analyze it with Cattaneo–Christov heat flux and homogeneous-heterogeneous reactions. Thermal stratification is also taken into consideration. Originality/value No such work is yet done in the literature.


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 581 ◽  
Author(s):  
Taha Rajeh ◽  
Ping Tu ◽  
Hua Lin ◽  
Houlei Zhang

A single-leaf type paddle heat exchanger with molten salt as the working fluid is a proper option in high temperature heating processes of materials. In this paper, based on computational fluid dynamics (CFD) simulations, we present the thermo-fluid characteristics of high temperature molten salt flowing in single-leaf type hollow paddles in the view of both the first law and the second law of thermodynamics. The results show that the heat transfer rate of the hollow paddles is significantly greater than that of solid paddles. The penalty of the heat transfer enhancement is additional pressure drop and larger total irreversibility (i.e., total entropy generation rate). Increasing the volume of the fluid space helps to enhance the heat transfer, but there exists an upper limit. Hollow paddles are more favorable in heat transfer enhancement for designs with a larger height of the paddles, flow rate of molten salt and material-side heat transfer coefficient. The diameter of the flow holes influences the pressure drop strongly, but their position is not important for heat transfer in the studied range. Other measures of modifying the fluid flow and heat transfer like internal baffles, more flow holes or multiple channels for small fluid volume are further discussed. For few baffles, their effects are limited. More flow holes reduce the pressure drop obviously. For the hollow paddles with small fluid volume, it is possible to increase the heat transfer rate with more fluid channels. The trade-off among fluid flow, heat transfer and mechanical strength is necessary. The thermo-fluid characteristics revealed in this paper will provide guidance for practical designs.


2019 ◽  
Vol 29 (11) ◽  
pp. 4334-4348
Author(s):  
Minqiang Pan ◽  
Hongqing Wang ◽  
Yujian Zhong ◽  
Tianyu Fang ◽  
Xineng Zhong

Purpose With the increasing heat dissipation of electronic devices, the cooling demand of electronic products is increasing gradually. A water-cooled microchannel heat exchanger is an effective cooling technology for electronic equipment. The structure of a microchannel has great impact on the heat transfer performance of a microchannel heat exchanger. The purpose of this paper is to analyze and compare the fluid flow and heat transfer characteristic of a microchannel heat exchanger with different reentrant cavities. Design/methodology/approach The three-dimensional steady, laminar developing flow and conjugate heat transfer governing equations of a plate microchannel heat exchanger are solved using the finite volume method. Findings At the flow rate range studied in this paper, the microchannel heat exchangers with reentrant cavities present better heat transfer performance and smaller pressure drop. A microchannel heat exchanger with trapezoidal-shaped cavities has best heat transfer performance, and a microchannel heat exchanger with fan-shaped cavities has the smallest pressure drop. Research limitations/implications The fluid is incompressible and the inlet temperature is constant. Practical implications It is an effective way to enhance heat transfer and reduce pressure drop by adding cavities in microchannels and the data will be helpful as guidelines in the selection of reentrant cavities. Originality/value This paper provides the pressure drop and heat transfer performance analysis of microchannel heat exchangers with various reentrant cavities, which can provide reference for heat transfer augmentation of an existing microchannel heat exchanger in a thermal design.


2019 ◽  
Vol 30 (6) ◽  
pp. 3463-3480 ◽  
Author(s):  
Jafar Hasnain ◽  
Zaheer Abbas ◽  
Mariam Sheikh ◽  
Shaban Aly

Purpose This study aims to present an analysis on heat transfer attributes of fluid-particle interaction over a permeable elastic sheet. The fluid streaming on the sheet is Casson fluid (CF) with uniform distribution of dust particles. Design/methodology/approach The basic steady equations of the CF and dust phases are in the form of partial differential equations (PDEs) which are remodeled into ordinary ones with the aid of similarity transformations. In addition to analytical solution, numerical solution is obtained for the reduced coupled non-linear ordinary differential equations (ODEs) to validate the results. Findings The solution seems to be influenced by significant physical parameters such as CF parameter, magnetic parameter, suction parameter, fluid particle interaction parameter, Prandtl number, Eckert number and number density. The impact of these parameters on flow field and temperature for both fluid and dust phases is presented in the form of graphs and discussed in detail. The effect on skin friction coefficient and heat transfer rate is also presented in tabular form. It has been observed that an increase in the CF parameter curtails the fluid velocity as well as the particle velocity however enhances the heat transfer rate at the wall. Furthermore, comparison of the numerical and analytical solution is also made and found to be in excellent agreement. Originality/value Although the analysis of dusty fluid flow has been widely examined, however, the present study obtained both analytical and numerical results of power law temperature distribution in dusty Casson fluid under the influence of magnetic field which are new and original for such type of flow.


Sign in / Sign up

Export Citation Format

Share Document