Research on transient aerodynamic characteristics of windshield wipers of vehicles

2019 ◽  
Vol 29 (8) ◽  
pp. 2870-2884
Author(s):  
Zhen Chen ◽  
Zhenqqi Gu ◽  
Tao Jiang

Purpose The main purpose of this paper is to gain a better understanding of the transient aerodynamic characteristics of moving windshield wipers. In addition, this paper also strives to illustrate and clarify how the wiper motion impacts the airflow structure; the aerodynamic interaction of two wipers is also discussed. Design/methodology/approach A standard vehicle model proposed by the Motor Industry Research Association and a pair of simplified bone wipers are introduced, and a dynamic mesh technique and user-defined functions are used to achieve the wiper motion. Finite volume methods and large eddy simulation (LES) are used to simulate the transient airflow field. The simulation results are validated through the wind tunnel test. Findings The results obtained from the study are presented graphically, and pressure, velocity distributions, airflow structures, aerodynamic drag and lift force are shown. Significant influences of wiper motion on airflow structures are achieved. The maximum value of aerodynamic lift and drag force exists when wipers are rotating and there is a certain change rule. The aerodynamic lift and drag force when wipers are rotating downward is greater than when wipers are rotating upward, and the force when rotating upward is greater than that when steady. The aerodynamic lift and drag forces of the driver-side wiper is greater than those of the passenger-side wiper. Originality/value The LES method in combination with dynamic mesh technique to study the transient aerodynamic characteristics of windshield wipers is relatively new.

2019 ◽  
Vol 91 (6) ◽  
pp. 873-879 ◽  
Author(s):  
Robert Kulhánek

Purpose Aerodynamics of paragliders is very complicated aeroelastic phenomena. The purpose of this work is to quantify the amount of aerodynamic drag related to the flexible nature of a paraglider wing. Design/methodology/approach The laboratory testing on scaled models can be very difficult because of problems in the elastic similitude of such a structure. Testing of full-scale models in a large facility with a large full-scale test section is very expensive. The degradation of aerodynamic characteristics is evaluated from flight tests of the paraglider speed polar. All aspects of the identification such as pilot and suspension lines drag and aerodynamics of spanwise chambered wings are discussed. The drag of a pilot in a harness was estimated by means of wind tunnel testing, computational fluid dynamics (CFD) solver was used to estimating smooth wing lift and drag characteristics. Findings The drag related to the flexible nature of the modern paraglider wing is within the range of 4-30 per cent of the total aerodynamic drag depending on the flight speed. From the results, it is evident that considering only the cell opening effect is sufficient at a low-speed flight. The stagnation point moves forwards towards the nose during the high speed flight. This causes more pronounced deformation of the leading edge and thus increased drag. Practical implications This paper deals with a detailed analysis of specific paraglider wing. Although the results are limited to the specific geometry, the findings help in the better understanding of the paraglider aerodynamics generally. Originality/value The data obtained in this paper are not affected by any scaling problems. There are only few experimental results in the field of paragliders on scaled models. Those results were made on simplified models at very low Reynolds number. The aerodynamic drag characteristics of the pilot in the harness with variable angles of incidence and Reynolds numbers have not yet been published.


Fuel ◽  
2020 ◽  
Vol 259 ◽  
pp. 116083 ◽  
Author(s):  
Zhimin Zheng ◽  
Wenming Yang ◽  
Peng Yu ◽  
Yongtie Cai ◽  
Hao Zhou ◽  
...  

2013 ◽  
Vol 791-793 ◽  
pp. 1069-1072 ◽  
Author(s):  
Shao Zhu Wang ◽  
Han Ping Wang ◽  
Ming Yang ◽  
Lin Peng Wang ◽  
Guang Wei Wei

Cool Launch project is an important launch mode of submarine launched missile, the water-exit trajectory characteristic of the missile in launching process becomes to research focus. Model of three dimensional water-exit trajectory of submarine launched missile was built based on dynamic mesh technique and simulation operation was carried out to obtain the characteristics of water-exit trajectory & attitude. The method adopted in the establishment of the model and the result has provided references to the research of water-exit trajectory.


2017 ◽  
Vol 170 ◽  
pp. 139-153 ◽  
Author(s):  
Swapnil V. Ghatage ◽  
Md. Shakhaoath Khan ◽  
Zhengbiao Peng ◽  
Elham Doroodchi ◽  
Behdad Moghtaderi ◽  
...  

2019 ◽  
Vol 91 (10) ◽  
pp. 1285-1294 ◽  
Author(s):  
Jing Zhang ◽  
Wenwen Kang ◽  
Lingyu Yang

Purpose Boundary layer ingestion (BLI) is one of the probable noteworthy features of distributed propulsion configuration (DPC). Because of BLI, strong coupling effects are generated between the aerodynamics and propulsion system of aircraft, leading to the specific lift and drag aerodynamic characteristics. This paper aims to propose a model-based comprehensive analysis method to investigate this unique aerodynamic. Design/methodology/approach To investigate this unique aerodynamics, a model-based comprehensive analysis method is proposed. This method uses a detailed mathematical model of the distributed propulsion system to provide the essential boundary conditions and guarantee the accuracy of calculation results. Then a synthetic three-dimensional computational model is developed to analyze the effects of BLI on the lift and drag aerodynamic characteristics. Findings Subsequently, detailed computational analyses are conducted at different flight states, and the regularities under various flight altitudes and velocities are revealed. Computational results demonstrate that BLI can improve the lift to drag ratio evidently and enable a great performance potentiality. Practical implications The general analysis method and useful regularities have reference value to DPC aircraft and other similar aircrafts. Originality/value This paper proposed a DPS model-based comprehensive analysis method of BLI benefit on aerodynamics for DPC aircraft, and the unique aerodynamics of this new configuration under various flight altitudes and velocities was revealed.


Sign in / Sign up

Export Citation Format

Share Document