Investigation of the effects of geometrical parameters, eccentricity and perforated fins on natural convection heat transfer in a finned horizontal annulus using three dimensional lattice Boltzmann flux solver

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mahyar Ashouri ◽  
Mohammad Mehdi Zarei ◽  
Ali Moosavi

Purpose The purpose of this paper is to investigate the effects of geometrical parameters, eccentricity and perforated fins on natural convection heat transfer in a finned horizontal annulus using three-dimensional lattice Boltzmann flux solver. Design/methodology/approach Three-dimensional lattice Boltzmann flux solver is used in the present study for simulating conjugate heat transfer within an annulus. D3Q15 and D3Q7 models are used to solve the fluid flow and temperature field, respectively. The finite volume method is used to discretize mass, momentum and energy equations. The Chapman–Enskog expansion analysis is used to establish the connection between the lattice Boltzmann equation local solution and macroscopic fluxes. To improve the accuracy of the lattice Boltzmann method for curved boundaries, lattice Boltzmann equation local solution at each cell interface is considered to be independent of each other. Findings It is found that the maximum heat transfer rate occurs at low fin spacing especially by increasing the fin height and decreasing the internal-cylindrical distance. The effect of inner cylinder eccentricity is not much considerable (up to 5.2% enhancement) while the impact of fin eccentricity is more remarkable. Negative fin eccentricity further enhances the heat transfer rate compared to a positive fin eccentricity and the maximum heat transfer enhancement of 91.7% is obtained. The influence of using perforated fins is more considerable at low fin spacing although some heat transfer enhancements are observed at higher fin spacing. Originality/value The originality of this paper is to study three-dimensional natural convection in a finned-horizontal annulus using three-dimensional lattice Boltzmann flux solver, as well as to apply symmetry and periodic boundary conditions and to analyze the effect of eccentric annular fins (for the first time for air) and perforated annular fins (for the first time so far) on the heat transfer rate.

Author(s):  
Basma Souayeh ◽  
Nader Ben-Cheikh ◽  
Brahim Ben-Beya

Purpose The purpose of this paper is to examine numerically the three natural convection of air induced by temperature difference between a cold outer cubic enclosure and a hot inner cylinder. Simulations have been carried out for Rayleigh numbers ranging from 103 to 107 and titled angle of the enclosure from 0° to 90°. The developed mathematical model is governed by the coupled equations of continuity, momentum and energy, and is solved by finite volume method. The effects of cylinder inclination and Rayleigh number on fluid flow and heat transfer are presented. The distribution of isocontours of temperature and isosurfaces of velocity eventually reaches a steady state in the range of Rayleigh numbers between 103 and 107 for titled inclination of 90°; however, for the remaining inclinations, Rayleigh number must be in the range 103-106 to avoid unsteady state, which is manifested by the division of the area containing the maximum local heat transfer rate into three parts for a Rayleigh number equal to 107 and an inclination of 90°. We mention that instability study is not included in the present paper, which is solely devoted to three-dimensional calculations. Results also indicate that optimal average heat transfer rate is obtained for both high Rayleigh number of 106 and high inclination of 90° for the two cases of the inner cylinder and cubical enclosure. Design/methodology/approach The manuscript deals with prediction of the three-dimensional natural convection phenomena in a cubical cavity induced by an isothermal cylinder at the center with different inclinations by simulating the flow using highly numerical methods such as finite volume method. Findings It is found that the local Nusselt number through active walls for titled inclination set at 90°, the symmetry of the flow is conserved and the area containing the maximum heat transfer is divided into three smaller areas situated near the upper portion of the wall, taking the maximum value. That may be due to the preparation of local occurrence of instabilities and bifurcation phenomena that appear for Ra > 107, which is not included in the present paper to save journal space. It was found also that an optimal heat transfer appears when the cylinder orientation becomes vertical (a = 90°). For this inclination, buoyancy forces act upward, corresponding to an aiding situation. In addition, heat transfer rate is increasing with Rayleigh numbers, so correlations of average Nusselt through the cubical cavity and the cylinder are established as function of two parameters (Ra, a). Comparisons of the numerical results with those obtained from all correlations show good agreements. Originality/value To the author’s knowledge, studies have thus far adressed three-dimensional cuboids enclosures induced by an inner shape which the location is changed. However, no study has examined three-dimensional natural convection between the inner isothermal cylinder and outer cooled cubical enclosure when the outer enclosure is tilted.


Author(s):  
Abimanyu Purusothaman ◽  
Abderrahmane Baïri ◽  
Nagarajan Nithyadevi

Purpose The purpose of this paper is to examine numerically the natural convection heat transfer in a cubical cavity induced by a thermally active plate. Effects of the plate size and its orientation with respect to the gravity vector on the convective heat transfer and the flow structures inside the cavity are studied and highlighted. Design/methodology/approach The numerical code is based on the finite volume method with semi-implicit method for pressure-linked equation algorithm. The convective and diffusive terms in momentum equations are handled by adopting the power law scheme. Finally, the discretized sets of algebraic equations are solved by the line-by-line tri-diagonal matrix algorithm. Findings The results show that plate orientation and size plays a significant role on heat transfer. Also, the heat transfer rate is an increasing function of Rayleigh number for both orientations of the heated plate. Depending on the thermal management of the plate and its application (as in electronics), the heat transfer rate is maximized or minimized by selecting appropriate parameters. Research limitations/implications The flow is assumed to be 3D, time-dependent, laminar and incompressible with negligible viscous dissipation and radiation. The fluid properties are assumed to be constant, except for the density in the buoyancy term that follows the Boussinesq approximation. Originality/value The present work will give some additional knowledge in designing sealed cavities encountered in some engineering applications as in aeronautics, automobile, metallurgy or electronics.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Surabhi Nishad ◽  
Sapna Jain ◽  
Rama Bhargava

Purpose This paper aims to study the flow and heat transfer inside a wavy enclosure filled with Cu-water nanofluid under magnetic field effect by parallel implemented meshfree approach. Design/methodology/approach The simulation has been carried out for a two-dimensional model with steady, laminar and incompressible flow of the nanofluid filled inside wavy enclosure in which one of the walls is sinusoidal such that the amplitude (A = 0.15) and number of undulations (n = 2) are fixed. A uniform magnetic field B0 has been applied at an inclination angle γ. The governing equations for the transport phenomena have been solved numerically by implementing element-free Galerkin method (EFGM) with the sequential as well as parallel approach. The effect of various parameters, namely, nanoparticle volume fraction (φ), Rayleigh number (Ra), Hartmann number (Ha) and magnetic field inclination angle (γ) has been studied on the natural convection flow of nanofluid. Findings The results are obtained in terms of average Nusselt number calculated at the cold wavy wall, streamlines and isotherms. It has been observed that the increasing value of Rayleigh number results in increased heat transfer rate while the Hartmann number retards the fluid motion. On the other hand, the magnetic field inclination angle gives rise to the heat transfer rate up to its critical value. Above this value, the heat transfer rate starts to decrease. Originality/value The implementation of the magnetic field and its inclination has provided very interesting results on heat and fluid flow which can be used in the drug delivery where nanofluids are used in many physiological problems. Another important novelty of the paper is that meshfree method (EFGM) has been used here because the domain is irregular. The results have been found to be very satisfactory. In addition, parallelization of the scheme (which has not been implemented earlier in such problems) improves the computational efficiency.


Author(s):  
Alireza Rahimi ◽  
Abbas Kasaeipoor ◽  
Emad Hasani Malekshah ◽  
Mohammad Mehdi Rashidi ◽  
Abimanyu Purusothaman

Purpose This study aims to investigate the three-dimensional natural convection and entropy generation in a cuboid enclosure filled with CuO-water nanofluid. Design/methodology/approach The lattice Boltzmann method is used to solve the problem numerically. Two different multiple relaxation time (MRT) models are used to solve the problem. The D3Q7–MRT model is used to solve the temperature field, and the D3Q19 is used to solve the fluid flow of natural convection within the enclosure. Findings The influences of different Rayleigh numbers (103 < Ra < 106) and solid volume fractions (0 < f < 0.04) on the fluid flow, heat transfer, total entropy generation, local heat transfer irreversibility and local fluid friction irreversibility are presented comprehensively. To predict thermo–physical properties, dynamic viscosity and thermal conductivity, of CuO–water nanofluid, the Koo–Kleinstreuer–Li (KKL) model is applied to consider the effect of Brownian motion on nanofluid properties. Originality/value The originality of this work is to analyze the three-dimensional natural convection and entropy generation using a new numerical approach of dual-MRT-based lattice Boltzmann method.


Author(s):  
Chemseddine Maatki ◽  
Kaouther Ghachem ◽  
Mohammed A. Almeshaal ◽  
Nidhal Ben Khedher ◽  
Lioua Kolsi

Abstract The Three-dimensional natural convection with isothermal discrete heat sources in a cubical cavity has been carefully studied using the 3D vector potential-vorticity formulation. Based on the finite volume method, the governing equations are solved with a home-made computational code (written in Fortran). Assuming that all cavity vertical walls are adiabatic, the upper wall of the cavity is kept at a cold temperature. However, in the bottom face, heat sources are placed under different configurations. The size of the discrete sources, their positions, and their numbers are varied for different Rayleigh numbers. The Prandtl number is fixed at 0.71. Three-dimensional distribution of the temperature iso-surfaces, the heat transfer rate, and entropy generation are evaluated. It is found that heat transfer and entropy generation are strongly affected by the arrangement of the discrete heated sources. In conclusion, the heat transfer rate is maximized, and the entropy generation is minimized for the inline arrangement of more than two heaters compared to the diagonal one.


2019 ◽  
Vol 29 (3) ◽  
pp. 1058-1078 ◽  
Author(s):  
Alireza Rahimi ◽  
Pouria Azarikhah ◽  
Abbas Kasaeipoor ◽  
Emad Hasani Malekshah ◽  
Lioua Kolsi

Purpose This paper aims to investigate the natural convection fluid flow and heat transfer in a finned/multi-pipe cavity. Design/methodology/approach The cavity is filled with the CuO-water nanofluid. The Koo–Kleinstreuer–Li model is used to estimate the dynamic viscosity and consider Brownian motion. On the other hand, the effect of the shapes of nanoparticles on the thermal conductivity and related heat transfer rate is presented. Findings In the present investigation, the governing parameters are Rayleigh number, CuO nanoparticle concentration in pure water and the thermal arrangements of internal active fins and solid bodies. Impacts of these parameters on the nanofluid flow, heat transfer rate, total/local entropy generation and heatlines are presented. It is concluded that adding nanoparticles to the pure fluid has a significant positive influence on the heat transfer performance. In addition, the average Nusselt number and total entropy generation have direct a relationship with the Rayleigh number. The thermal arrangement of the internal bodies and fins is a good controlling tool to determine the desired magnitude of heat transfer rate. Originality/value The originality of this paper is to use the lattice Boltzmann method in simulating the nanofluid flow and heat transfer within a cavity included with internal active bodies and fins.


2019 ◽  
Vol 30 (7) ◽  
pp. 3685-3699 ◽  
Author(s):  
Sowmya G. ◽  
Gireesha B.J. ◽  
Prasannakumara B.C.

Purpose The purpose of this paper is to study the thermal behaviour of radial porous fin wetted with nanofluid containing different shaped nanoparticles in the presence of natural convection and radiation. Here, the nanofluid suspended with molybdenum disulfide nanoparticle with base fluid as water is considered. The influence of non-spherical nanoparticles such as platelet, cylinder, brick and blade shapes is also investigated. Design/methodology/approach The modeled equations are non-dimensionalized and solved numerically via Runge–Kutta–Fehlberg method combined with shooting scheme. Findings The flow natures of the pertinent parameter are represented graphically and discussed their physical significance. From the validation of obtained outcome, it is found that the use nanofluid has significant influence on heat transfer rate. Among platelet, cylinder, brick and blade shapes, brick-shaped nanoparticle shows better heat transfer rate. Originality/value The present paper deals with an analysis of the flow of molybdenum disulfide nanoparticles suspended in water over a porous fin of a radial profile. The effect of differently shaped nanoparticles on the heat transfer enhancement through the radial porous fin is investigated for the first time. The natural convection and radiation effects are also considered. The modeled equations are non-dimensionalized and solved numerically via Runge–Kutta–Fehlberg method combined with shooting scheme. The effect of pertinent parameters on temperature field is examined. From the validation of obtained outcome it is found that the use nanofluid has significant influence on heat transfer rate. Among platelet, cylinder, brick and blade shapes, brick-shaped nanoparticle shows better heat transfer rate.


Sign in / Sign up

Export Citation Format

Share Document