shaped nanoparticles
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 42)

H-INDEX

21
(FIVE YEARS 5)

Author(s):  
N. Sandeep ◽  
G.P. Ashwinkumar

In this paper, a numerical computational work is carried out to investigate the significance of nanoparticle shape on magnetohydrodynamic stagnation-point flow of Carreau nanoliquid caused by a horizontally moving thin needle. The drive and thermal transport nature of Ti6Al4V+Ethylene glycol nanoliquid under the stimulus of space-dependent heat source and magnetized force is discussed numerically. The novelty of this work is to obtain the simultaneous solutions for three different shapes of nanoparticles namely spherical, cylindrical and laminar. The flow governing partial differential equations are transformed into ordinary differential equations with appropriate similarity variables and solved numerically by using Runge–Kutta and Newton's approach. Numerical outcomes of velocity and thermal distributions under the influence of different physical parameters are illustrated via graphical trends, wall friction and rate of heat transfer are interpreted using tabular values. It reveals from results that the thermal transfer performance of the Carreau nanoliquid is advanced when spherical shaped nanoparticles are used as compared with cylindrical and laminar-shaped nanoparticles. Also, it is witnessed that needle thickness parameter plays vital role in augmenting thermal transport rate of the nanoliquid.


2021 ◽  
Vol 2 (2) ◽  
pp. 01-13
Author(s):  
M.H.A. Kamal ◽  
A. Ali ◽  
Y.J. Lim ◽  
N.A. Rawi ◽  
S. Shafie

The unsteady viscous nanofluid flow near a three-dimensional stagnation point was studied numerically under microgravity environment. g-Jitter is one of the effects occurs under microgravity environment that producing a fluctuating gravitational field. Three different types of nanoparticles were induced in the study that is copper (Cu), alumina (Al2O3), and titania (TiO2) which then produce a water-based typed of nanofluid. In addition, different shape of nanoparticle was applied on the study in analyzing the performance of each types of nanoparticle. The fluid system was then mathematically formulated into a system of partial differential equation based on physical law and principle such as conservation of mass, Newton’s second law and conservation of energy. The system of equation then undergoes semi-similar transformation technique in reducing the complexity of the problem into non dimensionless form. Keller box method was applied into the dimensionless system of equations in solving the problem numerically. The problem was analyzed in term of velocity and temperature profiles together with skin friction coefficient and Nusselt number. The results shown that temperature profile, skin friction coefficient and Nusselt number were increase while velocity profile decreased as nanoparticle volume fraction decreased. The results indicated that, the needle-shaped nanoparticles give the highest enhancement on the heat transfer of the nanofluid compared to sphere and disk-shaped nanoparticles with more than 14% significant different. In addition,  alumina hold the highest velocity profile while copper hold the lowest velocity profile.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Abdullah Dawar ◽  
Ebenezer Bonyah ◽  
Saeed Islam ◽  
Ahmed Alshehri ◽  
Zahir Shah

The nanofluids can be used in the subsequent precise areas like chemical nanofluids, environmental nanofluids, heat transfer nanofluids, pharmaceutical nanofluids, drug delivery nanofluids, and process/extraction nanofluids. In short, the number of engineering and industrial applications of nanofluid technologies, as well as their emphasis on particular industrial applications, has been increased recently. Therefore, this exploration is carried out to analyze the nanofluid flow past a rotating disk with velocity slip and convective conditions. The water-based spherical-shaped nanoparticles of copper, alumina, and titanium have been considered in this analysis. The modeled problem has been solved with the help of homotopic technique. Convergence of the homotopic technique is shown with the help of the figure. The role of the physical factors on radial and tangential velocities, temperature, surface drag force, and heat transfer rate are displayed through figures and tables. The outcomes demonstrate that the surface drag force of the water-based spherical-shaped nanoparticles of Cu, Al2O3, and TiO2 has been reduced with a greater magnetic field. The radial and tangential velocities of the water-based spherical-shaped nanoparticles of Cu, Al2O3, and TiO2, and pure water have been augmented via magnetic parameter. The radial velocity of the water-based spherical-shaped nanoparticle of Cu has been augmented via nanoparticle volume fraction, whereas reduced for the Al2O3 and TiO2 nanoparticles. The tangential velocity of the water-based spherical-shaped nanoparticles of Cu, Al2O3, and TiO2 has reduced via nanoparticle volume fraction. Also, the variations in radial and tangential velocities are greater for slip conditions as compared to no-slip conditions.


Author(s):  
Roberto C. Dante ◽  
Denisse G. Dante ◽  
Pablo Martín-Ramos ◽  
Pedro Chamorro-Posada ◽  
María Carmen Valsania

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1466
Author(s):  
Kunal Sandip Garud ◽  
Seong-Guk Hwang ◽  
Taek-Kyu Lim ◽  
Namwon Kim ◽  
Moo-Yeon Lee

The improvement in the quantitative and qualitative heat transfer performances of working fluids is trending research in the present time for heat transfer applications. In the present work, the first and second law analyses of a microplate heat exchanger with single-particle and hybrid nanofluids are conducted. The microplate heat exchanger with single-particle and hybrid nanofluids is analyzed using the computational fluid dynamics approach with symmetrical heat transfer and fluid flow analyses. The single-particle Al2O3 nanofluid and the hybrid Al2O3/Cu nanofluid are investigated for different nanoparticles shapes of sphere (Sp), oblate spheroid (OS), prolate spheroid (PS), blade (BL), platelet (PL), cylinder (CY) and brick (BR). The first law characteristics of NTU, effectiveness and performance index and the second characteristics of thermal, friction and total entropy generation rates and Bejan number are compared for Al2O3 and Al2O3/Cu nanofluids with considered different-shaped nanoparticles. The OS- and PL-shaped nanoparticles show superior and worse first and second law characteristics, respectively, for Al2O3 and Al2O3/Cu nanofluids. The hybrid nanofluid presents better first and second law characteristics compared to single-particle nanofluid for all nanoparticle shapes. The Al2O3/Cu nanofluid with OS-shaped nanoparticles depicts maximum values of performance index and Bejan number as 4.07 and 0.913, respectively. The first and second law characteristics of the best combination of the Al2O3/Cu nanofluid with OS-shaped nanoparticles are investigated for various volume fractions, different temperature and mass flow rate conditions of hot and cold fluids. The first and second law characteristics are optimum at higher hot fluid temperature, lower cold fluid temperature, lower hot and cold fluid mass flow rates. In addition, the first and second law characteristics have improved with increase in volume fraction.


2021 ◽  
Author(s):  
Benjamin J Lee ◽  
Yahya Cheema ◽  
Shahed Bader ◽  
Gregg A Duncan

Nanoparticle drug delivery systems encounter many biological barriers, such as the extracellular matrix and mucus gels, that they must bypass to gain access to target cells. A design parameter that has recently gained attention is nanoparticle shape, as it has been shown elongated rod shaped nanoparticles achieve higher diffusion rates through biological gels. However, the optimal dimensions of rod shaped nanoparticles to enhance this effect has yet to be established. To systematically approach this, rod-shaped nanoparticles were synthesized by mechanically stretching 100 nm, 200 nm, and 500 nm spherical nanoparticles. Transmission electron microscopy confirmed this procedure yields a significant fraction of elongated rods and remaining spheres could be removed by centrifugation. Fluorescent microscopy and multiple particle tracking analysis was then used to characterize rod-shaped and spherical nanoparticle diffusion in MaxGel, a model extracellular matrix hydrogel. When dispersed in MaxGel, we found rod-shaped nanoparticles exhibited the greatest enhancement in diffusion rate when their length far exceeds the average hydrogel network size. These results further establish the importance of shape as a design criterion to improve nanoparticle based drug delivery systems.


Sign in / Sign up

Export Citation Format

Share Document