Heat flow model based on lattice Boltzmann method for modeling of heat transfer during phase transformation

2019 ◽  
Vol 30 (5) ◽  
pp. 2255-2271
Author(s):  
Łukasz Łach ◽  
Dmytro Svyetlichnyy ◽  
Robert Straka

Purpose A fundamental principle of materials engineering is that the microstructure of a material controls the properties. The phase transformation is an important phenomenon that determines the final microstructure. Recently, many analytical and numerical methods were used for modeling of phase transformation, but some limitations can be seen in relation to the choice of the shape of growing grains, introduction of varying grain growth rate and modeling of diffusion phenomena. There are also only few comprehensive studies that combine the final microstructure with the actual conditions of its formation. Therefore, the objective of the work is a development of a new hybrid model based on lattice Boltzmann method (LBM) and cellular automata (CA) for modeling of the diffusional phase transformations. The model has a modular structure and simulates three basic phenomena: carbon diffusion, heat flow and phase transformation. The purpose of this study is to develop a model of heat flow with consideration of enthalpy of transformation as one of the most important parts of the proposed new hybrid model. This is one of the stages in the development of the complex model, and the obtained results will be used in a combined solution of heat flow and carbon diffusion during the modeling of diffusion phase transformations. Design/methodology/approach Different values of overheating/overcooling affect different values in the enthalpy of transformation and thus the rate of transformation. CA and LBM are used in the hybrid model in part related to heat flow. LBM is used for modeling of heat flow, while CA is used for modeling of the microstructure evolution during the phase transformation. Findings The use of LBM and CA in one numerical solution creates completely new possibilities for modeling of phase transformations. CA and LBM in comparison with commonly used approaches significantly simplify interface and interaction between different parts of the model, which operates in a common domain. The CA can be used practically for all possible processes that consist of nucleation and grains growth. The advantages of the LBM method can be well used for the simulation of heat flow during the transformation, which is confirmed by numerical results. Practical implications The developed heat flow model will be combined with the carbon diffusion model at the next stage of work, and the new complex hybrid model at the final stage will provide new solutions in numerical simulation of phase transformations and will allow comprehensive modeling of the diffusional phase transformations in many processes. Heating, annealing and cooling can be considered. Originality/value The paper presents the developed model of heat flow (temperature module), which is one of the main parts of the new hybrid model devoted to modeling of phase transformation. The model takes into account the enthalpy of transformation, and the connection with the model of microstructure evolution was obtained.

2020 ◽  
Vol 37 (8) ◽  
pp. 2761-2783
Author(s):  
Łukasz Łach ◽  
Dmytro Svyetlichnyy

Purpose Some functional properties of engineering materials, i.e. physical, mechanical and thermal ones, depend directly on the microstructure, which is a result of processes occurring in the material during the forming and thermomechanical processing. The proper microstructure can be obtained in many cases by the phase transformation. This phenomenon is one of the most important processes during hot forming and heat treatment. The purpose of this paper is to develop a new comprehensive hybrid model for modeling diffusion phase transformations. A problem has been divided into several tasks and is carried out on several stages. The purpose of this stage is a development of the structure of a hybrid model, development of an algorithm used in the diffusion module and one-dimensional heat flow and diffusion modeling. Generally, the processes of phase transformations are studied well enough but there are not many tools for their complex simulations. The problems of phase transformation simulation are related to the proper consideration of diffusion, movement of phase boundaries and kinetics of transformation. The proposed new model at the final stage of development will take into account the varying grain growth rate, different shape of growing grains and will allow for proper modeling of heat flow and carbon diffusion during the transformation in many processes, where heating, annealing and cooling can be considered (e.g. homogenizing and normalizing). Design/methodology/approach One of the most suitable methods for modeling of microstructure evolution during the phase transformation is cellular automata (CA), while lattice Boltzmann method (LBM) suits for modeling of diffusion and heat flow. Then, the proposed new hybrid model is based on CA and LBM methods and uses high performing parallel computations. Findings The first simulation results obtained for one-dimensional modeling confirm the correctness of interaction between LBM and CA in common numerical solution and the possibility of using these methods for modeling of phase transformations. The advantages of the LBM method can be used for the simulation of heat flow and diffusion during the transformation taking into account the results obtained from the simulations. LBM creates completely new possibilities for modeling of phase transformations in combination with CA. Practical implications The studies are focused on diffusion phase transformations in solid state in condition of low cooling rate (e.g. transformation of austenite into ferrite and pearlite) and during the heating and annealing (e.g. transformation of the ferrite-pearlite structure into austenite, the alignment of carbon concentration in austenite and growth of austenite grains) in carbon steels within a wide range of carbon content. The paper presents the comprehensive modeling system, which can operate with the technological processes with phase transformation during heating, annealing or cooling. Originality/value A brief review of the modeling of phase transformations and a description of the structure of a new CA and LBM hybrid model and its modules are presented in the paper. In the first stage of model implementation, the one-dimensional LBM model of diffusion and heat flow was developed. The examples of simulation results for several variants of modeling with different boundary conditions are shown.


2018 ◽  
Vol 240 ◽  
pp. 01020
Author(s):  
Łukasz Łach ◽  
Robert Straka ◽  
Dmytro Svyetlichnyy

In heat treatment of materials, the phase transformation is an important phenomenon, which determines the final microstructure. The microstructure of different materials described by such parameters as morphology, grain size, phase fraction and their spatial distribution, largely effects on the mechanical and functional properties of final products. The subject of the work is a development of a hybrid model based on CA and Lattice Boltzmann method (LBM) for modeling of the diffusion phase transformation. The model has a modular structure and simulates three basic phenomena: diffusion, heat flow and phase transformation. The objective of the paper is a presentation of module of the hybrid model for simulation of heat flow with considering of enthalpy of transformation. This is one of the stages in the development of the model and obtained results will be used in a combined solution of heat transfer and diffusion during the modeling of diffusion phase transformations. Lately, the model will be extended to three dimensions and will use hybrid computational systems (CPU and GPU). CA and LBM are used in the model as follows. LBM is used for modeling of heat flow, while CA is used for modeling of microstructure evolution during the phase transformation. The main factors considered in the model are the enthalpy of transformation and heat transfer. The paper presents the results of the modeling of the new phase growth determined by different values of overcooling affecting on different values in the enthalpy of transformation. The heat flow is simulated and the results for some modeling variants are shown. Examples of simulation results obtained from the modeling are presented in the form of images, which present the growth of new phase and temperature distributions.


2010 ◽  
Vol 108 (1) ◽  
pp. 013508 ◽  
Author(s):  
Taeseok Kim ◽  
Manoj R. Pillai ◽  
Michael J. Aziz ◽  
Michael A. Scarpulla ◽  
Oscar D. Dubon ◽  
...  

1981 ◽  
Vol 51 (2) ◽  
pp. 327-334 ◽  
Author(s):  
S. D. Morrison

The increased food intake of rats exposed to cold is the result of increased intake due to cold (cold-specific compartment; A) and decreased intake due to simultaneously decreased body weight (weight-specific compartment; B). The two compartments are evaluated at 5, 13, and 17 degrees C. B is evaluated as the food intake of theoretical, isogravimetric control (identical to cold-exposed rats with respect to body weight and rate of change of body weight and identical to nonexposed rats in all other respects) that takes into account both the change in energy expenditure due to decreased body weight and the energy yield from tissue catabolism represented by change of body weight. A is the observed food intake minus B. A theoretical heat-flow model, in which expected changes in heat flow during cold exposure drive food intake to maintain or restore preexposure body weight status, corroborated the partition derived from experimental data. However, both the experimental results and the heat-flow model imply that the energy density of body weight change is negatively correlated with rate of body weight change. The energy density of weight change is high with high rates of weight loss and low with high rats of weight gain.


Author(s):  
Abdel-Wahed Assar ◽  
Nahed El-Mahallawy ◽  
Mohamed Taha ◽  
Ahmed El-Sabbagh
Keyword(s):  

2019 ◽  
Vol 4 (3) ◽  
pp. 125-127
Author(s):  
Frederick Mayer ◽  
John Reitz

Sign in / Sign up

Export Citation Format

Share Document