Approximate analytical solution for the one-dimensional nonlinear Boussinesq equation

Author(s):  
Hossein Aminikhah

Purpose – The purpose of this paper is to provide closed-form approximate solutions to the one-dimensional Boussinesq equation for a semi-infinite aquifer when the hydraulic head at the source is an arbitrary function of time. Combination of the Laplace transform and homotopy perturbation methods (LTHPM) are considered as an algorithm which converges rapidly to the exact solution of the nonlinear Boussinesq equation. Design/methodology/approach – The authors present the solution of nonlinear Boussinesq equation by combination of Laplace transform and new homotopy perturbation methods. An important property of the proposed method, which is clearly demonstrated in example, is that spectral accuracy is accessible in solving specific nonlinear nonlinear Boussinesq equation which has analytic solution functions. Findings – The authors proposed a combination of Laplace transform method and homotopy perturbation method to solve the one-dimensional Boussinesq equation. The results are found to be in excellent agreement. The results show that the LTNHPM is an effective mathematical tool which can play a very important role in nonlinear sciences. Originality/value – The authors provide closed-form approximate solutions to the one-dimensional Boussinesq equation for a semi-infinite aquifer when the hydraulic head at the source is an arbitrary function of time. In this work combination of Laplace transform and new homotopy perturbation methods (LTNHPM) are considered as an algorithm which converges rapidly to the exact solution of the nonlinear Boussinesq equation.

2017 ◽  
Vol 8 (1-2) ◽  
pp. 52
Author(s):  
Samir Karasuljic ◽  
Enes Duvnjakovic ◽  
Vedad Pasic ◽  
Elvis Barakovic

We consider an approximate solution for the one--dimensional semilinear singularly--perturbed boundary value problem, using the previously obtained numerical values of the boundary value problem in the mesh points and the representation of the exact solution using Green's function. We present an \(\varepsilon\)--uniform convergence of such gained the approximate solutions, in the maximum norm of the order \(\mathcal{O}\left(N^{-1}\right)\) on the observed domain. After that, the constructed approximate solution is repaired and we obtain a solution, which also has \(\varepsilon\)--uniform convergence, but now of order \(\mathcal{O}\left(\ln^2N/N^2\right)\) on \([0,1]\). In the end a numerical experiment is presented to confirm previously shown theoretical results.


2009 ◽  
Vol 145 (5) ◽  
pp. 1227-1248 ◽  
Author(s):  
Angela Gibney

AbstractThe moduli space $\M _{g,n}$ of n-pointed stable curves of genus g is stratified by the topological type of the curves being parameterized: the closure of the locus of curves with k nodes has codimension k. The one-dimensional components of this stratification are smooth rational curves called F-curves. These are believed to determine all ample divisors. F-conjecture A divisor on $\M _{g,n}$ is ample if and only if it positively intersects theF-curves. In this paper, proving the F-conjecture on $\M _{g,n}$ is reduced to showing that certain divisors on $\M _{0,N}$ for N⩽g+n are equivalent to the sum of the canonical divisor plus an effective divisor supported on the boundary. Numerical criteria and an algorithm are given to check whether a divisor is ample. By using a computer program called the Nef Wizard, written by Daniel Krashen, one can verify the conjecture for low genus. This is done on $\M _g$ for g⩽24, more than doubling the number of cases for which the conjecture is known to hold and showing that it is true for the first genera such that $\M _g$ is known to be of general type.


An analytical solution of Riemann’s equations for the one-dimensional propagation of sound waves of finite amplitude in a gas obeying the adiabatic law p = k ρ γ is obtained for any value of the parameter γ. The solution is in the form of a complex integral involving an arbitrary function which is found from the initial conditions by solving a generalization of Abel’s integral equation. The results are applied to the problem of the expansion of a gas cloud into a vacuum.


2000 ◽  
Vol 62 (3) ◽  
pp. 417-426 ◽  
Author(s):  
C.-H. Lee ◽  
Q. H. Ansari ◽  
J.-C. Yao

In this paper, we define the concept of η- subdifferential in a more general setting than the one used by Yang and Craven in 1991. By using η-subdifferentiability, we suggest a perturbed algorithm for finding the approximate solutions of strongly nonlinear variational-like inclusions and prove that these approximate solutions converge to the exact solution. Several special cases are also discussed.


Sign in / Sign up

Export Citation Format

Share Document