Constrained optimal design of X̅ control chart with multiple assignable causes under Burr XII failure mechanism

2018 ◽  
Vol 35 (9) ◽  
pp. 1809-1834 ◽  
Author(s):  
Aitin Saadatmeli ◽  
Mohamad Bameni Moghadam ◽  
Asghar Seif ◽  
Alireza Faraz

Purpose The purpose of this paper is to develop a cost model by the variable sampling interval and optimization of the average cost per unit of time. The paper considers an economic–statistical design of the X̅ control charts under the Burr shock model and multiple assignable causes were considered and compared with three types of prior distribution for the mean shift parameter. Design/methodology/approach The design of the modified X̅ chart is based on the two new concepts of adjusted average time to signal and average number of false alarms for X̅ control chart under Burr XII shock model with multiple assignable causes. Findings The cost model was examined through a numerical example, with the same cost and time parameters, so the optimal of design parameters were obtained under uniform and non-uniform sampling schemes. Furthermore, a sensitivity analysis was conducted in a way that the variability of loss cost and design parameters was evaluated supporting the changes of cost, time and Burr XII distribution parameters. Research limitations/implications The economic–statistical model scheme of X̅ chart was developed for the Burr XII distributed with multiple assignable causes. The correlated data are among the assumptions to be examined. Moreover, the optimal schemes for the economic-statistic chart can be expanded for correlated observation and continuous process. Practical implications The economic–statistical design of control charts depends on the process shock model distribution and due to difficulties from both theoretical and practical aspects; one of the proper alternatives may be the Burr XII distribution which is quite flexible. Yet, in Burr distribution context, only one assignable cause model was considered where more realistic approach may be to consider multiple assignable causes. Originality/value This study presents an advanced theoretical model for cost model that improved the shock model that presented in the literature. The study obviously indicates important evidence to justify the implementation of cost models in a real-life industry.

2019 ◽  
Vol 36 (4) ◽  
pp. 526-551 ◽  
Author(s):  
Mohammad Hosein Nadreri ◽  
Mohamad Bameni Moghadam ◽  
Asghar Seif

PurposeThe purpose of this paper is to develop an economic statistical design based on the concepts of adjusted average time to signal (AATS) andANFforX¯control chart under a Weibull shock model with multiple assignable causes.Design/methodology/approachThe design used in this study is based on a multiple assignable causes cost model. The new proposed cost model is compared with the same cost and time parameters and optimal design parameters under uniform and non-uniform sampling schemes.FindingsNumerical results indicate that the cost model with non-uniform sampling cost has a lower cost than that with uniform sampling. By using sensitivity analysis, the effect of changing fixed and variable parameters of time, cost and Weibull distribution parameters on the optimum values of design parameters and loss cost is examined and discussed.Practical implicationsThis research adds to the body of knowledge relating to the quality control of process monitoring systems. This paper may be of particular interest to practitioners of quality systems in factories where multiple assignable causes affect the production process.Originality/valueThe cost functions for uniform and non-uniform sampling schemes are presented based on multiple assignable causes withAATSandANFconcepts for the first time.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mahmoud Alsaid ◽  
Rania M. Kamal ◽  
Mahmoud M. Rashwan

Purpose This paper presents economic and economic–statistical designs of the adaptive exponentially weighted moving average (AEWMA) control chart for monitoring the process mean. It also aims to compare the effect of estimated process parameters on the economic performance of three charts, which are Shewhart, exponentially weighted moving average and AEWMA control charts with economic–statistical design. Design/methodology/approach The optimal parameters of the control charts are obtained by applying the Lorenzen and Vance’s (1986) cost function. Comparisons between the economic–statistical and economic designs of the AEWMA control chart in terms of expected cost and statistical measures are performed. Also, comparisons are made between the economic performance of the three competing charts in terms of the average expected cost and standard deviation of expected cost. Findings This paper concludes that taking into account the economic factors and statistical properties in designing the AEWMA control chart leads to a slight increase in cost but in return the improvement in the statistical performance is substantial. In addition, under the estimated parameters case, the comparisons reveal that from the economic point of view the AEWMA chart is the most efficient chart when detecting shifts of different sizes. Originality/value The importance of the study stems from designing the AEWMA chart from both economic and statistical points of view because it has not been tackled before. In addition, this paper contributes to the literature by studying the effect of the estimated parameters on the performance of control charts with economic–statistical design.


Author(s):  
Masoud Tavakoli ◽  
Reza Pourtaheri

Due to the proper performance of Bayesian control chart in detecting process shifts, it recently has become the subject of interest. It has been proved that on Bayesian and traditional control charts, the economic and statistical performances of the variable sampling interval (VSI) scheme are superior to those of the fixed ratio sampling (FRS) strategy in detecting small to moderate shifts. This paper studies the VSI multivariate Bayesian control chart based on economic and economic-statistical designs. Since finding the distribution of Bayesian statistic is t complicated, we apply Monte Carlo method and we employ artificial bee colony (ABC) algorithm to obtain the optimal design parameters (sample size, sampling intervals, warning limit and control limit). In the end, this case study is compared with VSI Hotelling’s T2 control chart and it is shown that this approach is more desirable statistically and economically.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Johnson A. Adewara ◽  
Kayode S. Adekeye ◽  
Olubisi L. Aako

In this paper, two methods of control chart were proposed to monitor the process based on the two-parameter Gompertz distribution. The proposed methods are the Gompertz Shewhart approach and Gompertz skewness correction method. A simulation study was conducted to compare the performance of the proposed chart with that of the skewness correction approach for various sample sizes. Furthermore, real-life data on thickness of paint on refrigerators which are nonnormal data that have attributes of a Gompertz distribution were used to illustrate the proposed control chart. The coverage probability (CP), control limit interval (CLI), and average run length (ARL) were used to measure the performance of the two methods. It was found that the Gompertz exact method where the control limits are calculated through the percentiles of the underline distribution has the highest coverage probability, while the Gompertz Shewhart approach and Gompertz skewness correction method have the least CLI and ARL. Hence, the two-parameter Gompertz-based methods would detect out-of-control faster for Gompertz-based X¯ charts.


2018 ◽  
Vol 30 (3) ◽  
pp. 232-247 ◽  
Author(s):  
Somayeh Fadaei ◽  
Alireza Pooya

Purpose The purpose of this paper is to apply fuzzy spectrum in order to collect the vague and imprecise data and to employ the fuzzy U control chart in variable sample size using fuzzy rules. This approach is improved and developed by providing some new rules. Design/methodology/approach The fuzzy operating characteristic (FOC) curve is applied to investigate the performance of the fuzzy U control chart. The application of FOC presents fuzzy bounds of operating characteristic (OC) curve whose width depends on the ambiguity parameter in control charts. Findings To illustrate the efficiency of the proposed approach, a practical example is provided. Comparing performances of control charts indicates that OC curve of the crisp chart has been located between the FOC bounds, near the upper bound; as a result, for the crisp control chart, the probability of the type II error is of significant level. Also, a comparison of the crisp OC curve with OCavg curve and FOCα curve approved that the probability of the type II error for the crisp chart is more than the same amount for the fuzzy chart. Finally, the efficiency of the fuzzy chart is more than the crisp chart, and also it timely gives essential alerts by means of linguistic terms. Consequently, it is more capable of detecting process shifts. Originality/value This research develops the fuzzy U control chart with variable sample size whose output is fuzzy. After creating control charts, performance evaluation in the industry is important. The main contribution of this paper is to employs the FOC curve for evaluating the performance of the fuzzy control chart, while in prior studies in this area, the performance of fuzzy control chart has not been evaluated.


Author(s):  
Amirhossein Amiri ◽  
Ali Salmasnia ◽  
Meraj Zarifi ◽  
Mohammad Reza Maleki

In recent years, adaptive control charts in which the design parameters depend on the observed samples have been successfully used as efficient alternatives for traditional control charts with constant parameters. In crisp run control rules, the process state may change very sharply from in-control to out-of-control conditions which increase the rate of false alarms. To overcome this drawback, this paper presents an adaptive Shewhart-type control chart, where the design parameters (sample size ([Formula: see text]), sampling interval ([Formula: see text]), and control limit coefficients ([Formula: see text] and [Formula: see text])) are defined with linguistic variables. To accomplish that, the chart parameters are determined based on the location of eight previous chart statistics using a set of fuzzy rules in a continuous environment. In order to improve the sensitivity of the proposed control chart in detecting small shifts in both location and scale parameters, the adaptive procedure is designed by integration of fuzzy Western Electric rules and fuzzy adaptive sampling rules. After designing the control charts using a fuzzy inference system (FIS), in order to provide an economic design of the proposed control chart, a tuned Particle Swarm Optimization (PSO) algorithm is employed to determine the optimal values corresponding to membership functions of the control chart parameters. Finally, using simulation studies, the capability of the proposed control chart is analyzed and compared with common charts in the literature. The results confirm that under different shifts in location and scale parameters, the proposed control chart outperforms other charts in terms of both economic and statistical criteria.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Arijit Maji ◽  
Indrajit Mukherjee

PurposeThe purpose of this study is to propose an effective unsupervised one-class-classifier (OCC) support vector machine (SVM)-based single multivariate control chart (OCC-SVM) to simultaneously monitor “location” and “scale” shifts of a manufacturing process.Design/methodology/approachThe step-by-step approach to developing, implementing and fine-tuning the intrinsic parameters of the OCC-SVM chart is demonstrated based on simulation and two real-life case examples.FindingsA comparative study, considering varied known and unknown response distributions, indicates that the OCC-SVM is highly effective in detecting process shifts of samples with individual observations. OCC-SVM chart also shows promising results for samples with a rational subgroup of observations. In addition, the results also indicate that the performance of OCC-SVM is unaffected by the small reference sample size.Research limitations/implicationsThe sample responses are considered identically distributed with no significant multivariate autocorrelation between sample observations.Practical implicationsThe proposed easy-to-implement chart shows satisfactory performance to detect an out-of-control signal with known or unknown response distributions.Originality/valueVarious multivariate (e.g. parametric or nonparametric) control chart(s) are recommended to monitor the mean (e.g. location) and variance (e.g. scale) of multiple correlated responses in a manufacturing process. However, real-life implementation of a parametric control chart may be complex due to its restrictive response distribution assumptions. There is no evidence of work in the open literature that demonstrates the suitability of an unsupervised OCC-SVM chart to simultaneously monitor “location” and “scale” shifts of multivariate responses. Thus, a new efficient OCC-SVM single chart approach is proposed to address this gap to monitor a multivariate manufacturing process with unknown response distributions.


2017 ◽  
Vol 34 (4) ◽  
pp. 494-507 ◽  
Author(s):  
Ahmad Hakimi ◽  
Amirhossein Amiri ◽  
Reza Kamranrad

Purpose The purpose of this paper is to develop some robust approaches to estimate the logistic regression profile parameters in order to decrease the effects of outliers on the performance of T2 control chart. In addition, the performance of the non-robust and the proposed robust control charts is evaluated in Phase II. Design/methodology/approach In this paper some, robust approaches including weighted maximum likelihood estimation, redescending M-estimator and a combination of these two approaches (WRM) are used to decrease the effects of outliers on estimating the logistic regression parameters as well as the performance of the T2 control chart. Findings The results of the simulation studies in both Phases I and II show the better performance of the proposed robust control charts rather than the non-robust control chart for estimating the logistic regression profile parameters and monitoring the logistic regression profiles. Practical implications In many practical applications, there are outliers in processes which may affect the estimation of parameters in Phase I and as a result of deteriorate the statistical performance of control charts in Phase II. The methods developed in this paper are effective for decreasing the effect of outliers in both Phases I and II. Originality/value This paper considers monitoring the logistic regression profile in Phase I under the presence of outliers. Also, three robust approaches are developed to decrease the effects of outliers on the parameter estimation and monitoring the logistic regression profiles in both Phases I and II.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Muhammad Aslam ◽  
G. Srinivasa Rao ◽  
Muhammad Saleem ◽  
Rehan Ahmad Khan Sherwani ◽  
Chi-Hyuck Jun

More recently in statistical quality control studies, researchers are paying more attention to quality characteristics having nonnormal distributions. In the present article, a generalized multiple dependent state (GMDS) sampling control chart is proposed based on the transformation of gamma quality characteristics into a normal distribution. The parameters for the proposed control charts are obtained using in-control average run length (ARL) at specified shape parametric values for different specified average run lengths. The out-of-control ARL of the proposed gamma control chart using GMDS sampling is explored using simulation for various shift size changes in scale parameters to study the performance of the control chart. The proposed gamma control chart performs better than the existing multiple dependent state sampling (MDS) based on gamma distribution and traditional Shewhart control charts in terms of average run lengths. A case study with real-life data from ICU intake to death caused by COVID-19 has been incorporated for the realistic handling of the proposed control chart design.


Information ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 312 ◽  
Author(s):  
Muhammad Zahir Khan ◽  
Muhammad Farid Khan ◽  
Muhammad Aslam ◽  
Seyed Taghi Akhavan Niaki ◽  
Abdur Razzaque Mughal

Conventional control charts are one of the most important techniques in statistical process control which are used to assess the performance of processes to see whether they are in- or out-of-control. As traditional control charts deal with crisp data, they are not suitable to study unclear, vague, and fuzzy data. In many real-world applications, however, the data to be used in a control charting method are not crisp since they are approximated due to environmental uncertainties and systematic ambiguities involved in the systems under investigation. In these situations, fuzzy numbers and linguistic variables are used to grab such uncertainties. That is why the use of a fuzzy control chart, in which fuzzy data are used, is justified. As an exponentially weighted moving average (EWMA) scheme is usually used to detect small shifts, in this paper a fuzzy EWMA (F-EWMA) control chart is proposed to detect small shifts in the process mean when fuzzy data are available. The application of the newly developed fuzzy control chart is illustrated using real-life data.


Sign in / Sign up

Export Citation Format

Share Document