Modeling a sequentially inspected system prone to degradation and shocks

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Himani Pant ◽  
S.B. Singh

PurposeIn certain environments, the system may not fail completely, but undergoes degradation, and the system productivity might decrease. Meanwhile, at the same time, the system may be vulnerable to shocks. A single-unit system prone to degradation and shocks is proposed in this study, and emphasis is placed upon determining its availability and cost rate.Design/methodology/approachThe considered single-unit system is expected to have three states, namely, normal, degraded and failed. As the system enters the degraded state, it is said to be partially failed. The degraded state incurs higher degradation than the normal state and is more prone to shocks. Inspections are used to determine the state and failure type of the system. Inspections are predetermined to be carried out sequentially at time I, I+aI, I+aI+a2I,… where 0 < a ≤ 1, until the detection of degradation/failure. Perfect repairs are conducted instantly on spotting the partial/complete failure. Two cases have been considered of repair taking constant times and random times.FindingsExplicit results on the reliability, availability (both point and limiting availability) and long-run average cost rate (LRACR) of a sequentially inspected single-unit system prone to degradation and shocks under constant and random repair times are given. Numerical example of an oil pipeline system is taken to clarify the acquired results.Originality/valueA sequentially inspected single-unit system prone to degradation and shock is studied unlike done previously.

2015 ◽  
Vol 52 (2) ◽  
pp. 558-573 ◽  
Author(s):  
Ji Hwan Cha ◽  
Inma T. Castro

In this paper a stochastic failure model for a system with stochastically dependent competing failures is analyzed. The system is subject to two types of failure: degradation failure and catastrophic failure. Both types of failure share an initial common source: an external shock process. This implies that they are stochastically dependent. In our developments of the model, the type of dependency between the two kinds of failure will be characterized. Conditional properties of the two competing risks are also investigated. These properties are the fundamental basis for the development of the maintenance strategy studied in this paper. Considering this maintenance strategy, the long-run average cost rate is derived and the optimal maintenance policy is discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Himani Pant ◽  
S.B. Singh

PurposeThe system encountering dormant failure subject to sequential inspections is modeled and the emphasis is made on determining the availability and long-run average cost rate for the model. The derived results are then utilized to obtain the optimal inspection period minimizing the cost.Design/methodology/approachExplicitly, a system with a functional and a failed state is taken into account. Inspections are performed to reveal the dormant failures and are assumed to be carried out at time T, T + aT, T + aT+a2 T, … where 0 < a = 1 in each cycle. Perfect repairs taking random times are performed if the system is found in a failed state during any inspection.FindingsSome theorems on the point availability, limiting availability and long-run average cost rate are obtained in the study. An illustration is shown to explain the results obtained in the proposed work. The effect of inspection time on the availability and cost rate is also analyzed graphically.Originality/valueThe availability and cost rate for a system with dormant failure under a sequential inspection policy are figured out unlike previous research.


2015 ◽  
Vol 52 (02) ◽  
pp. 558-573 ◽  
Author(s):  
Ji Hwan Cha ◽  
Inma T. Castro

In this paper a stochastic failure model for a system with stochastically dependent competing failures is analyzed. The system is subject to two types of failure: degradation failure and catastrophic failure. Both types of failure share an initial common source: an external shock process. This implies that they are stochastically dependent. In our developments of the model, the type of dependency between the two kinds of failure will be characterized. Conditional properties of the two competing risks are also investigated. These properties are the fundamental basis for the development of the maintenance strategy studied in this paper. Considering this maintenance strategy, the long-run average cost rate is derived and the optimal maintenance policy is discussed.


Author(s):  
Guoqing Cheng ◽  
Binghai Zhou ◽  
Ling Li

In this paper, we consider an unreliable production system consisting of two machines (M1 and M2) in which M1 produces a single product type to satisfy a constant and continuous demand of M2 and it is subjected to random failures. In order to palliate perturbations caused by failures, a buffer stock is built up to satisfy the demand during the production unavailability of M1. A traditional assumption made in the previous research is that repairs can restore the failed machines to as good as new state. To develop a more realistic mathematical model of the system, we relax this assumption by assuming that the working times of M1 after repairs are geometrically decreasing, which means M1 cannot be repaired as good as new. Undergoing a specified number of repairs, M1 will be replaced by an identical new one. A bivariate policy [Formula: see text] is considered, where S is the buffer stock level and N is the number of failures at which M1 is replaced. We derive the long-run average cost rate [Formula: see text] used as the basis for optimal determination of the bivariate policy. The optimal policies [Formula: see text] and [Formula: see text] are derived, respectively. Then, an algorithm is presented to find the optimal joint policy [Formula: see text]. Finally, an illustrative example is given to validate the proposed model. Sensitivity analyses are also carried out to illustrate the effectiveness and robustness of the proposed methodology.


Author(s):  
Qinglai Dong ◽  
Lirong Cui ◽  
Hongda Gao

A repair replacement model for a deteriorating system with delayed repair is studied, in which the successive working times after repair and the consecutive repair times of the system are described by geometric processes. The instantaneous availability is studied in the case of general distributions for the working time, repair time and delayed repair time. A bivariate replacement policy is considered, that is, the system is replaced whenever the working age of the system reaches T or at the first hitting time of the working time after repair with respect to the working time threshold τ, whichever occurs first. The explicit expression of the long-run average cost rate under the replacement policies is derived. The corresponding optimal replacement policy can be determined numerically, and numerical examples are presented to demonstrate the application of the developed model and approach. It is shown that the optimal solution and optimal value are sensitive to the tiny change in the ratios of the Geometric processes and the expectation of the delayed repair time.


Author(s):  
Yi Jiang

In this article, a generalized δ-shock model with multi-failure thresholds is studied. For the new model, the system fails depending on the interval times between two consecutive shocks which arrive according to a Poisson process. The shorter interval times may cause more serious failures and thus result in longer down times and more costs for repair. Assuming that the repair is imperfect, an order-replacement policy N is adopted. Explicitly, the spare system for replacement is ordered at the end of ( N – 1)th repair and the aging system is replaced at the Nth failure or at an unrepairable failure, whichever occurs first. In addition, the system must meet the requirement of availability, that is, the long-run average operating time per unit time should not be lower than a certain level. The average cost rate C( N) and the stationary availability A( N) are derived analytically. Some convergence properties of A( N) and C( N) are also investigated. The optimal order-replacement policy N* can be obtained numerically with the constraint of availability. Finally, an illustrative example is given and some sensitivity analyses are conducted to demonstrate the proposed shock model.


Author(s):  
Y. Sarada ◽  
R. Shenbagam

This study investigates two warranty models: fixed and extended warranty models with inspections, for a repairable deteriorating system. An alternating phase type quasi-renewal process is employed to model the operating and repair times. Failures occur at random instants of time. The condition of the system after repair is not as good as new. While the fixed warranty model is examined using the expected cost rate and a bi-criterion cost, an explicit expression for the long-run average cost rate is obtained for the extended warranty model by adopting a [Formula: see text]-policy. In addition, the extended warranty model is examined to include the downtime cost in the analysis while avoiding inspections. Numerical illustrations provided therein conform to the observations made in the study.


2012 ◽  
Vol 220-223 ◽  
pp. 210-214 ◽  
Author(s):  
Guo Qing Cheng ◽  
Ling Li

This paper proposes a model to find optimal ordering and replacement policies for a deteriorating system. Assume that the life time of system has a normal distribution, and it has two failures types, typeⅠfailure is repairable, whereas typeⅡfailure is catastrophic which leads to replacement. A replacement policy N is adopted by which the system will be replaced by an identical new one if available at the time following the Nth typeⅠfailure or the 1st typeⅡfailure whichever occurs first. Furthermore, it considers an ordering policy M in which a spare unit is ordered at the time of the Mth typeⅠfailure or 1st typeⅡfailure, whichever occurs first. The objective is to derive the long-run average cost rate and then find the optimal policy (N,M) such that the average cost rate is minimized. Finally, a numerical example is provided to illustrate the proposed model.


Sign in / Sign up

Export Citation Format

Share Document