Collaborative Optimization of Replacement and Spare Ordering of a Deteriorating System with Two Failure Types

2012 ◽  
Vol 220-223 ◽  
pp. 210-214 ◽  
Author(s):  
Guo Qing Cheng ◽  
Ling Li

This paper proposes a model to find optimal ordering and replacement policies for a deteriorating system. Assume that the life time of system has a normal distribution, and it has two failures types, typeⅠfailure is repairable, whereas typeⅡfailure is catastrophic which leads to replacement. A replacement policy N is adopted by which the system will be replaced by an identical new one if available at the time following the Nth typeⅠfailure or the 1st typeⅡfailure whichever occurs first. Furthermore, it considers an ordering policy M in which a spare unit is ordered at the time of the Mth typeⅠfailure or 1st typeⅡfailure, whichever occurs first. The objective is to derive the long-run average cost rate and then find the optimal policy (N,M) such that the average cost rate is minimized. Finally, a numerical example is provided to illustrate the proposed model.

Author(s):  
Z Wang ◽  
J Yang ◽  
G Wang ◽  
G Zhang

To determine the optimal maintenance number for a system with random maintenance quality in infinite time horizon, a sequential imperfect preventive maintenance model considering reliability limit is proposed. The proposed model is derived from the combination of the Kijima type virtual age model and the failure rate adjustment model. Maintenance intervals of the proposed model are obtained through an iteration method when both failure rate increase factor and maintenance restoration factor are random variables with a uniform distribution. The optimal maintenance policy is presented by minimizing the long-run average cost rate. A real numerical example for the failures of numerical control equipment is given to demonstrate the proposed model. Finally, a discussion is presented to show how the optimal average cost rate depends on the different cost parameters. The results show that in order to satisfy the practical requirements of high reliability, it is necessary and worthwhile to consider the system's reliability limit in preventive maintenance practice.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Shengliang Zong ◽  
Guorong Chai ◽  
Yana Su

We develop a model and a genetic algorithm for determining an optimal replacement policy for power equipment subject to Poisson shocks. If the time interval of two consecutive shocks is less than a threshold value, the failed equipment can be repaired. We assume that the operating time after repair is stochastically nonincreasing and the repair time is exponentially distributed with a geometric increasing mean. Our objective is to minimize the expected average cost under an availability requirement. Based on this average cost function, we propose the genetic algorithm to locate the optimal replacement policyNto minimize the average cost rate. The results show that the GA is effective and efficient in finding the optimal solutions. The availability of equipment has significance effect on the optimal replacement policy. Many practical systems fit the model developed in this paper.


Author(s):  
Guoqing Cheng ◽  
Binghai Zhou ◽  
Ling Li

In this paper, we consider an unreliable production system consisting of two machines (M1 and M2) in which M1 produces a single product type to satisfy a constant and continuous demand of M2 and it is subjected to random failures. In order to palliate perturbations caused by failures, a buffer stock is built up to satisfy the demand during the production unavailability of M1. A traditional assumption made in the previous research is that repairs can restore the failed machines to as good as new state. To develop a more realistic mathematical model of the system, we relax this assumption by assuming that the working times of M1 after repairs are geometrically decreasing, which means M1 cannot be repaired as good as new. Undergoing a specified number of repairs, M1 will be replaced by an identical new one. A bivariate policy [Formula: see text] is considered, where S is the buffer stock level and N is the number of failures at which M1 is replaced. We derive the long-run average cost rate [Formula: see text] used as the basis for optimal determination of the bivariate policy. The optimal policies [Formula: see text] and [Formula: see text] are derived, respectively. Then, an algorithm is presented to find the optimal joint policy [Formula: see text]. Finally, an illustrative example is given to validate the proposed model. Sensitivity analyses are also carried out to illustrate the effectiveness and robustness of the proposed methodology.


10.26524/cm66 ◽  
2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Govindaraju P ◽  
Ashok Kumar P

In this paper, we study a degenerative reparable system with two types of failure states.Any system after repair can not be as good as new. A general monotone process model for adegenerative system under partial product process is used. We use a replacement policy N based on the failure number of the system and to determine an optimal replacement policy N* such that the average cost rate is minimized.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Himani Pant ◽  
S.B. Singh

PurposeThe system encountering dormant failure subject to sequential inspections is modeled and the emphasis is made on determining the availability and long-run average cost rate for the model. The derived results are then utilized to obtain the optimal inspection period minimizing the cost.Design/methodology/approachExplicitly, a system with a functional and a failed state is taken into account. Inspections are performed to reveal the dormant failures and are assumed to be carried out at time T, T + aT, T + aT+a2 T, … where 0 < a = 1 in each cycle. Perfect repairs taking random times are performed if the system is found in a failed state during any inspection.FindingsSome theorems on the point availability, limiting availability and long-run average cost rate are obtained in the study. An illustration is shown to explain the results obtained in the proposed work. The effect of inspection time on the availability and cost rate is also analyzed graphically.Originality/valueThe availability and cost rate for a system with dormant failure under a sequential inspection policy are figured out unlike previous research.


Author(s):  
Qinglai Dong ◽  
Lirong Cui ◽  
Hongda Gao

A repair replacement model for a deteriorating system with delayed repair is studied, in which the successive working times after repair and the consecutive repair times of the system are described by geometric processes. The instantaneous availability is studied in the case of general distributions for the working time, repair time and delayed repair time. A bivariate replacement policy is considered, that is, the system is replaced whenever the working age of the system reaches T or at the first hitting time of the working time after repair with respect to the working time threshold τ, whichever occurs first. The explicit expression of the long-run average cost rate under the replacement policies is derived. The corresponding optimal replacement policy can be determined numerically, and numerical examples are presented to demonstrate the application of the developed model and approach. It is shown that the optimal solution and optimal value are sensitive to the tiny change in the ratios of the Geometric processes and the expectation of the delayed repair time.


Author(s):  
Yi Jiang

In this article, a generalized δ-shock model with multi-failure thresholds is studied. For the new model, the system fails depending on the interval times between two consecutive shocks which arrive according to a Poisson process. The shorter interval times may cause more serious failures and thus result in longer down times and more costs for repair. Assuming that the repair is imperfect, an order-replacement policy N is adopted. Explicitly, the spare system for replacement is ordered at the end of ( N – 1)th repair and the aging system is replaced at the Nth failure or at an unrepairable failure, whichever occurs first. In addition, the system must meet the requirement of availability, that is, the long-run average operating time per unit time should not be lower than a certain level. The average cost rate C( N) and the stationary availability A( N) are derived analytically. Some convergence properties of A( N) and C( N) are also investigated. The optimal order-replacement policy N* can be obtained numerically with the constraint of availability. Finally, an illustrative example is given and some sensitivity analyses are conducted to demonstrate the proposed shock model.


1994 ◽  
Vol 31 (4) ◽  
pp. 1123-1127 ◽  
Author(s):  
Yuan Lin Zhang

In this paper, a repairable system consisting of one unit and a single repairman is studied. Assume that the system after repair is not as good as new. Under this assumption, a bivariate replacement policy (T, N), where T is the working age and N is the number of failures of the system is studied. The problem is to determine the optimal replacement policy (T, N)∗such that the long-run average cost per unit time is minimized. The explicit expression of the long-run average cost per unit time is derived, and the corresponding optimal replacement policy can be determined analytically or numerically. Finally, under some conditions, we show that the policy (T, N)∗ is better than policies N∗ or T∗.


2001 ◽  
Vol 33 (1) ◽  
pp. 206-222 ◽  
Author(s):  
Xiaoyue Jiang ◽  
Viliam Makis ◽  
Andrew K. S. Jardine

In this paper, we study a maintenance model with general repair and two types of replacement: failure and preventive replacement. When the system fails a decision is made whether to replace or repair it. The repair degree that affects the virtual age of the system is assumed to be a random function of the repair-cost and the virtual age at failure time. The system can be preventively replaced at any time before failure. The objective is to find the repair/replacement policy minimizing the long-run expected average cost per unit time. It is shown that a generalized repair-cost-limit policy is optimal and the preventive replacement time depends on the virtual age of the system and on the length of the operating time since the last repair. Computational procedures for finding the optimal repair-cost limit and the optimal average cost are developed. This model includes many well-known models as special cases and the approach provides a unified treatment of a wide class of maintenance models.


Sign in / Sign up

Export Citation Format

Share Document