Availability and maintenance modeling of a batch service queuing system

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shweta Agarwal ◽  
S.B. Singh

PurposeThe purpose of the paper is to analyze reliability characteristics of batch service queuing system with a single server model that envisages Poisson input process and exponential service times under first come, first served (FCFS) queue discipline.Design/methodology/approachWith the help of renewal theory and stochastic processes, a model has been designed to discuss the reliability and its characteristics.FindingsThe instantaneous and steady-state availability along with the maintenance model of the systems subject to generalized M/Mb/1 queuing model is derived, and a few particular cases for availability are obtained as well. For supporting the developed model, a case study on electrical distribution system (EDS) has been illustrated, which also includes a comparison for the system subject to M/Mb/1 queuing model and the system without any queue (delay).Originality/valueIt is a quite realistic model that may aid to remove congestion in the system while repairing.

2014 ◽  
Vol 24 (1) ◽  
pp. 119-126 ◽  
Author(s):  
Rakesh Kumar ◽  
Kumar Sharma

Customer impatience has a very negative impact on the queuing system under investigation. If we talk from business point of view, the firms lose their potential customers due to customer impatience, which affects their business as a whole. If the firms employ certain customer retention strategies, then there are chances that a certain fraction of impatient customers can be retained in the queuing system. A reneged customer may be convinced to stay in the queuing system for his further service with some probability, say q and he may abandon the queue without receiving the service with a probability p(=1? q). A finite waiting space Markovian single-server queuing model with discouraged arrivals, reneging and retention of reneged customers is studied. The steady state solution of the model is derived iteratively. The measures of effectiveness of the queuing model are also obtained. Some important queuing models are derived as special cases of this model.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohsen Abdoli ◽  
Mostafa Zandieh ◽  
Sajjad Shokouhyar

Purpose This study is carried out in one public and one private health-care centers based on different probabilities of patient’s no-show rate. The present study aims to determine the optimal queuing system capacity so that the expected total cost is minimized. Design/methodology/approach In this study an M/M/1/K queuing model is used for analytical properties of optimal queuing system capacity and appointment window so that total costs of these cases could be minimized. MATLAB software version R2014a is used to code the model. Findings In this paper, the optimal queuing system capacity is determined based on the changes in effective parameters, followed by a sensitivity analysis. Total cost in public center includes the costs of patient waiting time and rejection. However, the total cost in private center includes costs of physician idle time plus costs of public center. At the end, the results for public and private centers are compared to reach a final assessment. Originality/value Today, determining the optimal queuing system capacity is one of the most central concerns of outpatient clinics. The large capacity of the queuing system leads to an increase in the patient’s waiting-time cost, and on the other hand, a small queuing system will increase the cost of patient’s rejection. The approach suggested in this paper attempts to deal with this mentioned concern.


2007 ◽  
Vol 21 (3) ◽  
pp. 361-380 ◽  
Author(s):  
Refael Hassin

This article deals with the effect of information and uncertainty on profits in an unobservable single-server queuing system. We consider scenarios in which the service rate, the service quality, or the waiting conditions are random variables that are known to the server but not to the customers. We ask whether the server is motivated to reveal these parameters. We investigate the structure of the profit function and its sensitivity to the variance of the random variable. We consider and compare variations of the model according to whether the server can modify the service price after observing the realization of the random variable.


2021 ◽  
Vol 12 (7) ◽  
pp. 1774-1784
Author(s):  
Girin Saikia ◽  
Amit Choudhury

The phenomena are balking can be said to have been observed when a customer who has arrived into queuing system decides not to join it. Reverse balking is a particular type of balking wherein the probability that a customer will balk goes down as the system size goes up and vice versa. Such behavior can be observed in investment firms (insurance company, Mutual Fund Company, banks etc.). As the number of customers in the firm goes up, it creates trust among potential investors. Fewer customers would like to balk as the number of customers goes up. In this paper, we develop an M/M/1/k queuing system with reverse balking. The steady-state probabilities of the model are obtained and closed forms of expression of a number of performance measures are derived.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Felix Blank

PurposeRefugee camps can be severely struck by pandemics, like potential COVID-19 outbreaks, due to high population densities and often only base-level medical infrastructure. Fast responding medical systems can help to avoid spikes in infections and death rates as they allow the prompt isolation and treatment of patients. At the same time, the normal demand for emergency medical services has to be dealt with as well. The overall goal of this study is the design of an emergency service system that is appropriate for both types of demand.Design/methodology/approachA spatial hypercube queuing model (HQM) is developed that uses queuing-theory methods to determine locations for emergency medical vehicles (also called servers). Therefore, a general optimization approach is applied, and subsequently, virus outbreaks at various locations of the study areas are simulated to analyze and evaluate the solution proposed. The derived performance metrics offer insights into the behavior of the proposed emergency service system during pandemic outbreaks. The Za'atari refugee camp in Jordan is used as a case study.FindingsThe derived locations of the emergency medical system (EMS) can handle all non-virus-related emergency demands. If additional demand due to virus outbreaks is considered, the system becomes largely congested. The HQM shows that the actual congestion is highly dependent on the overall amount of outbreaks and the corresponding case numbers per outbreak. Multiple outbreaks are much harder to handle even if their cumulative average case number is lower than for one singular outbreak. Additional servers can mitigate the described effects and lead to enhanced resilience in the case of virus outbreaks and better values in all considered performance metrics.Research limitations/implicationsSome parameters that were assumed for simplification purposes as well as the overall model should be verified in future studies with the relevant designers of EMSs in refugee camps. Moreover, from a practitioners perspective, the application of the model requires, at least some, training and knowledge in the overall field of optimization and queuing theory.Practical implicationsThe model can be applied to different data sets, e.g. refugee camps or temporary shelters. The optimization model, as well as the subsequent simulation, can be used collectively or independently. It can support decision-makers in the general location decision as well as for the simulation of stress-tests, like virus outbreaks in the camp area.Originality/valueThe study addresses the research gap in an optimization-based design of emergency service systems for refugee camps. The queuing theory-based approach allows the calculation of precise (expected) performance metrics for both the optimization process and the subsequent analysis of the system. Applied to pandemic outbreaks, it allows for the simulation of the behavior of the system during stress-tests and adds a further tool for designing resilient emergency service systems.


1965 ◽  
Vol 2 (2) ◽  
pp. 462-466 ◽  
Author(s):  
A. M. Hasofer

In a previous paper [2] the author has studied the single-server queue with non-homogeneous Poisson input and general service time, with particular emphasis on the case when the parameter of the Poisson input is of the form


Author(s):  
O. A. Chechelnitsky

The present article is devoted to research the multi-channelk model with the parallel structure. It means that we consider the model which consists of two infinite-server queues. The service time in the each system has general function of distribution. In this case the stochastic dynamic of our model cannot be defined by Markov chain. As a result, analysis of such models is much more difficult than that of the corresponding Markovian queueing models. Besides we assume that customers arrive to our model according a bivariate Poisson input flow. This input process is characterized by the fact that customers arrive according to a bivariate Poisson flow simultaneously. We consider the number of customers in the systems at time t. This stochastic process describes the state of our model. In present paper we find the limit joint distribution of the number of customers in the systems. In a general way (by differentiating the corresponding generating function.) we obtain the main characteristics of this distribution, such as the expected number of customers in the nodes, its variance and correlation. In the case when parameters of our model dependent on the parameter n (number of series) the limit normal distribution was obtained for the service process in the stationary regime.


Sign in / Sign up

Export Citation Format

Share Document