A risk analysis model for mining accidents using a fuzzy approach based on fault tree analysis

2018 ◽  
Vol 31 (4) ◽  
pp. 577-594 ◽  
Author(s):  
Fatma Yasli ◽  
Bersam Bolat

Purpose Risk analysis is a critical investigation field for many sectors and organizations to maintain the information management reliable. Since mining is one of the riskiest sectors for both workers and management, comprehensive risk analysis should be carried out. The purpose of this paper is to explore comprehensively the undesired events that may occur during a particular process with their main reasons and to perform a risk analysis for these events, by developing a risk analysis methodology. For performing risk analysis, discovering and defining the potential accidents and incidents including their root causes are important contributions of the study as distinct from the related literature. The fuzzy approach is used substantially to obtain the important inferences about the hazardous process by identifying the critical risk points in the processes. In the scope of the study, the proposed methodology is applied to an underground chrome mine and obtaining significant findings of mining risky operations is targeted. Design/methodology/approach Fault tree analysis and fuzzy approach are used for performing the risk analysis. When determining the probability and the consequences of the events which are essential components for the risk analysis, expressions of the heterogeneous expert group are considered by means of the linguistic terms. Fault tree analysis and fuzzy approach present a quiet convenience solution together to specify the possible accidents and incidents in the particular process and determine the values for the basis risk components. Findings This study primarily presents a methodology for a comprehensive risk analysis. By implementing the proposed methodology to the underground loading and conveying processes of a chrome mine, 28 different undesired events that may occur during the processes are specified. By performing risk analysis for these events, it is established that the employee’s physical constraint while working with the shovel in the fore area, the falling of materials on employees from the chute and the scaling bar injuries are the riskiest undesired events in the underground loading and conveying process of the mine. Practical implications The proposed methodology provides a confidential and comprehensive method for risk analysis of the undesired events in a particular process. The capability of fault tree analysis for specifying the undesired events systematically and the applicability of fuzzy approach for converting the experts’ linguistic expressions to the mathematical values provide a significant advantage and convenience for the risk analysis. Originality/value The major contribution of this paper is to develop a methodology for the risk analysis of a variety of mining accidents and incidents. The proposed methodology can be applied to many production processes to investigate the dangerous operations comprehensively and find out the efficient management strategies. Before performing the risk analysis, determining the all possible accidents and incidents in the particular process using the fault tree analysis provides the effectiveness and the originality of the study. Also, using the fuzzy logic to find out the consequences of the events with experts’ linguistic expressions provides an efficient method for performing risk analysis.

2018 ◽  
Vol 43 ◽  
pp. 248-260 ◽  
Author(s):  
Ana Paula Henriques de Gusmão ◽  
Maisa Mendonça Silva ◽  
Thiago Poleto ◽  
Lúcio Camara e Silva ◽  
Ana Paula Cabral Seixas Costa

2018 ◽  
Vol 35 (5) ◽  
pp. 1115-1141 ◽  
Author(s):  
Mina Moeinedini ◽  
Sadigh Raissi ◽  
Kaveh Khalili-Damghani

Purpose Enterprise resource planning (ERP) is assumed as a commonly used solution in order to provide an integrated view of core business processes, including product planning, manufacturing cost, delivery, marketing, sales, inventory management, shipping and payment. Selection and implementation of a suitable ERP solution are not assumed a trivial project because of the challenging nature of it, high costs, long-duration of installation and customization, as well as lack of successful benchmarking experiences. During the ERP projects, several risk factors threat the successful implementation of the project. These risk factors usually refer to different phases of the ERP projects including purchasing, pilot implementation, teaching, install, synchronizing, and movement from old systems toward new ones, initiation and utilization. These risk factors have dominant effects on each other. The purpose of this paper is to explore the hybrid reliability-based method is proposed to assess the risk factors of ERP solutions. Design/methodology/approach In this regard, the most important risk factors of ERP solutions are first determined. Then, the interactive relations of these factors are recognized using a graph based method, called interpretive structural modeling. The resultant network of relations between these factors initiates a new viewpoint toward the cause and effect relations among risk factors. Afterwards, a fuzzy fault tree analysis is proposed to calculate Failure Fuzzy Possibility (FFP) for the basic events of the fault tree leading to a quantitative evaluation of risk factors. Findings The whole proposed method is applied in a well-known Iranian foodservice distributor as a case study. The most impressive risk factors are identified, classified and prioritized. Moreover, the cause and effect diagram between the risk factors are identified. So, the ERP leader can plan a low-risk project and increase the chance of success. Originality/value According to the authors’ best knowledge, such approach was not reported before in the literature of ERP risk assessments.


2014 ◽  
Vol 926-930 ◽  
pp. 2001-2005
Author(s):  
You Long Yuan ◽  
Bin Liu

In order to integrate multiple experts' opinions effectively, a fault tree analysis model based on the similarity is presented in this paper. First, the concept of similarity used to fuse data is introduced to analyze the similarity among multiple experts' opinions, and to assign each expert's opinions credibility weights based on the analysis results. Then, experts' opinions is synthesized by evidence theory, the probability of accident is predicted, and the importance degrees of basic events which may lead to top event occur is judged. Finally, a quantitative FTA model for the gas poison is established to compute the probability of top event and identify the most dangerous path which may lead to the accident, the results of analysis provide references to the managers when they develop validity measures.


2020 ◽  
Vol 27 (9) ◽  
pp. 2501-2522 ◽  
Author(s):  
Pei-Yuan Hsu ◽  
Marco Aurisicchio ◽  
Panagiotis Angeloudis ◽  
Jennifer Whyte

PurposeDelays in construction projects are both disruptive and expensive. Thus, potential causes of schedule deviation need to be identified and mitigated. In previous research, delay factors were predominantly identified through surveys administered to stakeholders in construction projects. Such delay factors are typically considered individually and presented at the same level without explicitly examining their sequence of occurrence and inter-relationships. In reality, owing to the complex structure of construction projects and long execution time, non-conformance to schedule occurs by a chain of cascading events. An understanding of these linkages is important not only for minimising the delays but also for revealing the liability of stakeholders. To explicitly illustrate the cause–effect and logical relationship between delay factors and further identify the primary factors which possess the highest significance toward the overall project schedule delay, the fault tree analysis (FTA) method, a widely implemented approach to root cause problems in safety-critical systems, has been systematically and rigorously executed.Design/methodology/approachUsing a case study, the in-depth analysis for identifying the most fundamental delay factors has been fulfilled through FTA's tree structure. The logical deduction for mapping and visualising the chronological and cause–effect relationships between various delay factors has been conducted through the logical gate functions of FTA based on the data collected from the site event log, pre-fabricated structural component manufacturing log and face-to-face interview with project stakeholders.FindingsThe analysis identified multiple delay factors and showed how they are linked logically and chronologically from the primary causes to the ultimate undesired event in a rigorous manner. A comparison was performed between the proposed FTA model and the conventional investigation method for revealing the responsibility employed in the construction industry, consisting of event logs and problem reports. The results indicate that the FTA model provides richer information and a clearer picture of the network of delay factors. Importantly, the ability of FTA in revealing the causal connection between the events leading to the undesired delays and in comprehending their prominence in the real-world construction project has been clearly displayed.Originality/ valueThis study demonstrates a new application of FTA in the construction sector allowing the delay factors to be understood and visualised from a new perspective. The new approach has practical use in finding and removing root causes of the delay, as well as clarifying the attribution of responsibility that causes the delay.


Sign in / Sign up

Export Citation Format

Share Document