Closed-loop supply chain network equilibrium model and its Newton method

Kybernetes ◽  
2016 ◽  
Vol 45 (3) ◽  
pp. 393-410 ◽  
Author(s):  
Hongru Xu ◽  
Erbao Cao

Purpose – The purpose of this paper is to develop a closed-loop supply chain (CLSC) network equilibrium model which consists of manufactures, retailers and consumer markets engaged in a Cournot pricing game with heterogeneous multi-product. Design/methodology/approach – The authors model the optimal behavior of the various decision makers and CLSC network equilibrium, and derive the equilibrium conditions based on variational inequality approach. The authors present a new Newton method to solve the proposed model. Findings – The authors find that the algorithm converges to the solution rapidly for most cases. Besides, the authors discuss the effect of some parameters on the equilibrium solution of the model, and give some insights for policy makers, such as improving the technology level of the manufacturer, reducing the cost of waste disposal and increase the minimum ration of used product to total quantity. Originality/value – The authors derive the network equilibrium conditions by the variational inequality formulation in order to obtain the computation of the equilibrium flows and prices. The authors present a new Newton method to solve the proposed model. The authors discuss the effect of some parameters on the equilibrium solution of the model, and give some managerial insights

2020 ◽  
Vol 15 (4) ◽  
pp. 1613-1653
Author(s):  
Jaber Valizadeh ◽  
Ehsan Sadeh ◽  
Zainolabedin Amini Sabegh ◽  
Ashkan Hafezalkotob

Purpose In this study, the authors consider the key decisions in the design of the green closed-loop supply chain (CSLC) network. These decisions include considering the optimal location of suppliers, production facilities, distribution, customers, recycling centers and disposal of non-recyclable goods. In the proposed model, the level of technology used in recycling and production centers is taken into account. Moreover, in this paper is the environmental impacts of production and distribution of products based on the eco-indicator 99 are considered. Design/methodology/approach In this study, the author consider the key decisions in the design of the green CLSC network. These decisions include considering the optimal location of suppliers, production facilities, distribution, customers, recycling centers and disposal of non-recyclable goods. In the proposed model, the level of technology used in recycling and production centers is taken into account. Moreover, the environmental impacts of production and distribution of products based on the eco-indicator 99 are considered. Findings The results indicate that the results obtained from the colonial competition algorithm have higher quality than the genetic algorithm. This quality of results includes relative percentage deviation and computational time of the algorithm and it is shown that the computational time of the colonial competition algorithm is significantly lower than the computational time of the genetic algorithm. Furthermore, the limit test and sensitivity analysis results show that the proposed model has sufficient accuracy. Originality/value Solid modeling of the green supply chain of the closed loop using the solid optimized method by Bertsimas and Sim. Development of models that considered environmental impacts to the closed loop supply chain. Considering the impact of the technology type in the manufacture of products and the recycling of waste that will reduce emissions of environmental pollutants. Another innovation of the model is the multi-cycle modeling of the closed loop of supply chain by considering the uncertainty and the fixed and variable cost of transport.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saeid Jafarzadeh Ghoushchi ◽  
Iman Hushyar ◽  
Kamyar Sabri-Laghaie

PurposeA circular economy (CE) is an economic system that tries to eliminate waste and continually use resources. Due to growing environmental concerns, supply chain (SC) design should be based on the CE considerations. In addition, responding and satisfying customers are the challenges managers constantly encounter. This study aims to improve the design of an agile closed-loop supply chain (CLSC) from the CE point of view.Design/methodology/approachIn this research, a new multi-stage, multi-product and multi-period design of a CLSC network under uncertainty is proposed that aligns with the goals of CE and SC participants. Recycling of goods is an important part of the CLSC. Therefore, a multi-objective mixed-integer linear programming model (MILP) is proposed to formulate the problem. Besides, a robust counterpart of multi-objective MILP is offered based on robust optimization to cope with the uncertainty of parameters. Finally, the proposed model is solved using the e-constraint method.FindingsThe proposed model aims to provide the strategic choice of economic order to the suppliers and third-party logistic companies. The present study, which is carried out using a numerical example and sensitivity analysis, provides a robust model and solution methodology that are effective and applicable in CE-related problems.Practical implicationsThis study shows how all upstream and downstream units of the SC network must work integrated to meet customer needs considering the CE context.Originality/valueThe main goal of the CE is to optimize resources, reduce the use of raw materials, and revitalize waste by recycling. In this study, a comprehensive model that can consider both SC design and CE necessities is developed that considers all SC participants.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Yan Zhou ◽  
Chi Kin Chan ◽  
Kar Hung Wong ◽  
Y. C. E. Lee

We develop an equilibrium model of a closed-loop supply chain (CLSC) network with multiproducts, uncertain demands, and returns. This model belongs to the context of oligopolistic firms that compete noncooperatively in a Cournot-Nash framework under a stochastic environment. To satisfy the demands, we use two different channels: manufacturing new products and remanufacturing returned products through recycling used components. Since both the demands and product returns are uncertain, we consider two types of risks: overstocking and understocking of multiproducts in the forward supply chain. Then we set up the Cournot-Nash equilibrium conditions of the CLSC network whereby we maximize every oligopolistic firm's expected profit by deciding the production quantities of each new product as well as the path flows of each product on the forward supply chain. Furthermore, we formulate the Cournot-Nash equilibrium conditions of the CLSC network as a variational inequality and prove the existence and the monotonicity of the variational inequality. Finally, numerical examples are presented to illustrate the efficiency of our model.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yongyi Su ◽  
Jin Qin ◽  
Peng Yang ◽  
Qiwei Jiang

The logistics facility decisions may be the most critical and most difficult of the decisions needed to realize an efficient supply chain since these decisions have significant effects on the logistics costs generated in the logistics network. We establish a logistics super network equilibrium integrating urban logistics facilities with members of traditional supply chain network, using the variational inequality theory. This model takes into account the behavior of logistics facilities and the transactions between retailers and logistics facilities are examined in this paper. Furthermore, we obtain the equilibrium condition of the system, and the economic explanation and algorithm are given. Finally, some verification examples are provided to verify the solution and decision-making application.


2019 ◽  
Vol 17 (1) ◽  
pp. 131-159
Author(s):  
S. Umar Sherif ◽  
P. Sasikumar ◽  
P. Asokan ◽  
J. Jerald

Purpose Due to the economic benefits and environmental awareness, most of the battery manufacturing industries in India are interested to redesign their existing supply chain network or to incorporate the effective closed loop supply chain network (CLSCN). The purpose of this paper is to develop CLSCN model with eco-friendly distribution network and also enhance recycling to utilize recycled lead for new battery production. The existing CLSCN model of a battery manufacturing industry considered for case study is customized for attaining economic benefit and environmental safety. Hence, single objective, multi-echelon, multi-period and multi-product CLSCN model with centralized depots (CD) is developed in this work to maximize the profit and reduce the emission of CO2 in transportation. Design/methodology/approach The proposed CD has the facility to store new batteries (NB), scrap batteries (SB) and lead ingot. The objective of the proposed research work is to identify potential location of CD using K-means clustering algorithm, to allocate facilities with CD using multi-facility allocation (MFA) algorithm and to minimize overall travel distance by allowing bidirectional flow of materials and products between facilities. The proposed eco-friendly CLSCN-CD model is solved using GAMS 23.5 for optimal solutions. Findings The performance of the proposed model is validated by comparing with existing model. The evaluation reveals that the proposed model is better than the existing model. The sensitivity analysis is demonstrated with different rate of return of SB, different proportion of recycled lead and different type of vehicles, which will help the management to take appropriate decision in the context of cost savings. Originality/value This research work has proposed single objective, multi echelon, multi period and multi product CLSCN-CD model in the battery manufacturing industry to maximize the profit and reduce the CO2 emission in transportation, by enhancing the bidirectional flow of materials/products between facilities of entire model.


Kybernetes ◽  
2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hanieh Shambayati ◽  
Mohsen Shafiei Nikabadi ◽  
Seyed Mohammad Ali Khatami Firouzabadi ◽  
Mohammad Rahmanimanesh ◽  
Sara Saberi

PurposeSupply chains (SCs) have been growingly virtualized in response to the market challenges and opportunities that are presented by new and cost-effective internet-based technologies today. This paper designed a virtual closed-loop supply chain (VCLSC) network based on multiperiod, multiproduct and by using the Internet of Things (IoT). The purpose of the paper is the optimization of the VCLSC network.Design/methodology/approachThe proposed model considers the maximization of profit. For this purpose, costs related to virtualization such as security, energy consumption, recall and IoT facilities along with the usual costs of the SC are considered in the model. Due to real-world demand fluctuations, in this model, demand is considered fuzzy. Finally, the problem is solved using the Grey Wolf algorithm and Firefly algorithm. A numerical example and sensitivity analysis on the main parameters of the model are used to describe the importance and applicability of the developed model.FindingsThe findings showed that the Firefly algorithm performed better and identified more profit for the SC in each period. Also, the results of the sensitivity analysis using the IoT in a VCLSC showed that the profit of the virtual supply chain (VSC) is higher compared to not using IoT due to tracking defective parts and identifying reversible products. In proposed model, chain members can help improve chain operations by tracking raw materials and products, delivering products faster and with higher quality to customers, bringing a new level of SC efficiency to industries. As a result, VSCs can be controlled, programmed and optimized remotely over the Internet based on virtual objects rather than direct observation.Originality/valueThere are limited researches on designing and optimizing the VCLSC network. This study is one of the first studies that optimize the VSC networks considering minimization of virtual costs and maximization of profits. In most researches, the theory of VSC and its advantages have been described, while in this research, mathematical optimization and modeling of the VSC have been done, and it has been tried to apply SC virtualization using the IoT. Considering virtual costs in VSC optimization is another originality of this research. Also, considering the uncertainty in the SC brings the issue closer to the real world. In this study, virtualization costs including security, recall and energy consumption in SC optimization are considered.HighlightsInvestigates the role of IoT for virtual supply chain profit optimization and mathematical optimization of virtual closed-loop supply chain (VCLSC) based on multiperiod, multiproduct with emphasis on using the IoT under uncertainty.Considering the most important costs of virtualization of supply chain include: cost of IoT information security, cost of IoT energy consumption, cost of recall the production department, cost of IoT facilities.Selection of the optimal suppliers in each period and determination of the price of each returned product in virtual supply chain.Solving and validating the proposed model with two meta-heuristic algorithms (the Grey Wolf algorithm and Firefly algorithm).


2011 ◽  
Vol 267 ◽  
pp. 344-349
Author(s):  
Lei Wang

In this paper, we consider an algorithm for variational inequality(VI) problem on the supply chain network equilibrium model, which is established by Dong et al.. To this end, we first develop a global error bound for VI, which can be taken as an extension of the existing global error bound for VI, then present the convergence analysis of the method for solving the variational inequalities, and the convergence rate are also given under same conditions.


Sign in / Sign up

Export Citation Format

Share Document