Virtual machine placement mechanisms in the cloud environments: a systematic review

Kybernetes ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Haiyan Zhuang ◽  
Babak Esmaeilpour Ghouchani

Purpose Virtual machines (VMs) are suggested by the providers of cloud services as the services for the users over the internet. The consolidation of VM is the tactic of the competent and smart utilization of resources from cloud data centers. Placement of a VM is one of the significant issues in cloud computing (CC). Physical machines in a cloud environment are aware of the way of the VM placement (VMP) as the mapping VMs. The basic target of placement of VM issue is to reduce the physical machines' items that are running or the hosts in cloud data centers. The VMP methods have an important role in the CC. However, there is no systematic and complete way to discuss and analyze the algorithms. The purpose of this paper is to present a systematic survey of VMP techniques. Also, the benefits and weaknesses connected with selected VMP techniques have been debated, and the significant issues of these techniques are addressed to develop the more efficient VMP technique for the future. Design/methodology/approach Because of the importance of VMP in the cloud environments, in this paper, the articles and important mechanisms in this domain have been investigated systematically. The VMP mechanisms have been categorized into two major groups, including static and dynamic mechanisms. Findings The results have indicated that an appropriate VMP has the capacity to decrease the resource consumption rate, energy consumption and carbon emission rate. VMP approaches in computing environment still need improvements in terms of reducing related overhead, consolidation of the cloud environment to become an extremely on-demand mechanism, balancing the load between physical machines, power consumption and refining performance. Research limitations/implications This study aimed to be comprehensive, but there were some limitations. Some perfect work may be eliminated because of applying some filters to choose the original articles. Surveying all the papers on the topic of VMP is impossible, too. Nevertheless, the authors are trying to present a complete survey over the VMP. Practical implications The consequences of this research will be valuable for academicians, and it can provide good ideas for future research in this domain. By providing comparative information and analyzing the contemporary developments in this area, this research will directly support academics and working professionals for better knowing the growth in the VMP area. Originality/value The gathered information in this paper helps to inform the researchers with the state of the art in the VMP area. Totally, the VMP's principal intention, current challenges, open issues, strategies and mechanisms in cloud systems are summarized by explaining the answers.

T-Comm ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 28-34
Author(s):  
Andrew V. Toutov ◽  
◽  
Natalia V. Toutova ◽  
Anatoly S. Vorozhtsov ◽  
Iliya A. Andreev ◽  
...  

The problem of virtual machine placement on physical servers in cloud data centers is considered. The resource management system has a two-level architecture consisting of global and local controllers. Local controllers analyze the state of the physical servers on which they are located and determine possible underloading, overloading, and overheating states based on the forecast for the next observation window. If one of the listed states is detected, the local controller notifies the global controller, which selects the destination servers to host the virtual machines via migration. It is proposed to place virtual machines based on the criteria of minimum remaining unused resources and violation of SLA agreements. A mathematical formulation of the optimization problem is given, which is equivalent to the known main assignment problem in terms of structure, necessary conditions, and the nature of variables. Reducing the assignment problem to a closed transport problem allowed us to solve the problem of hosting virtual machines under many criteria in real time and significantly increase its dimension in comparison with heuristic algorithms, which makes it possible to maintain the quality of modern cloud services in the conditions of rapid growth of physical and virtual resources of data centers. The developed mathematical formulation of the problem and the results of computational experiments can be included in the mathematical software of virtual machine live migration.


2017 ◽  
Vol 16 (6) ◽  
pp. 6953-6961
Author(s):  
Kavita Redishettywar ◽  
Prof. Rafik Juber Thekiya

Cloud computing is a vigorous technology by which a user can get software, application, operating system and hardware as a service without actually possessing it and paying only according to the usage. Cloud Computing is a hot topic of research for the researchers these days. With the rapid growth of Interne technology cloud computing have become main source of computing for small as well big IT companies. In the cloud computing milieu the cloud data centers and the users of the cloud-computing are globally situated, therefore it is a big challenge for cloud data centers to efficiently handle the requests which are coming from millions of users and service them in an efficient manner. Load balancing ensures that no single node will be overloaded and used to distribute workload among multiple nodes. It helps to improve system performance and proper utilization of resources. We propose an improved load balancing algorithm for job scheduling in the cloud environment using K-Means clustering of cloudlets and virtual machines in the cloud environment. All the cloudlets given by the user are divided into 3 clusters depending upon client’s priority, cost and instruction length of the cloudlet. The virtual machines inside the datacenter hosts are also grouped into multiple clusters depending upon virtual machine capacity in terms of processor, memory, and bandwidth. Sorting is applied at both the ends to reduce the latency. Multiple number of experiments have been conducted by taking different configurations of cloudlets and virtual machine. Various parameters like waiting time, execution time, turnaround time and the usage cost have been computed inside the cloudsim environment to demonstrate the results. Compared with the other job scheduling algorithms, the improved load balancing algorithm can outperform them according to the experimental results.


2017 ◽  
Vol 26 (1) ◽  
pp. 113-128
Author(s):  
Gamal Eldin I. Selim ◽  
Mohamed A. El-Rashidy ◽  
Nawal A. El-Fishawy

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 389 ◽  
Author(s):  
Aisha Fatima ◽  
Nadeem Javaid ◽  
Tanzeela Sultana ◽  
Waqar Hussain ◽  
Muhammad Bilal ◽  
...  

With the increasing size of cloud data centers, the number of users and virtual machines (VMs) increases rapidly. The requests of users are entertained by VMs residing on physical servers. The dramatic growth of internet services results in unbalanced network resources. Resource management is an important factor for the performance of a cloud. Various techniques are used to manage the resources of a cloud efficiently. VM-consolidation is an intelligent and efficient strategy to balance the load of cloud data centers. VM-placement is an important subproblem of the VM-consolidation problem that needs to be resolved. The basic objective of VM-placement is to minimize the utilization rate of physical machines (PMs). VM-placement is used to save energy and cost. An enhanced levy-based particle swarm optimization algorithm with variable sized bin packing (PSOLBP) is proposed for solving the VM-placement problem. Moreover, the best-fit strategy is also used with the variable sized bin packing problem (VSBPP). Simulations are done to authenticate the adaptivity of the proposed algorithm. Three algorithms are implemented in Matlab. The given algorithm is compared with simple particle swarm optimization (PSO) and a hybrid of levy flight and particle swarm optimization (LFPSO). The proposed algorithm efficiently minimized the number of running PMs. VM-consolidation is an NP-hard problem, however, the proposed algorithm outperformed the other two algorithms.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1513-1516
Author(s):  
Hai Na Song ◽  
Xiao Qing Zhang ◽  
Zhong Tang He

Cloud computing environment is regarded as a kind of multi-tenant computing mode. With virtulization as a support technology, cloud computing realizes the integration of multiple workloads in one server through the package and seperation of virtual machines. Aiming at the contradiction between the heterogeneous applications and uniform shared resource pool, using the idea of bin packing, the multidimensional resource scheduling problem is analyzed in this paper. We carry out some example analysis in one-dimensional resource scheduling, two-dimensional resource schduling and three-dimensional resource scheduling. The results shows that the resource utilization of cloud data centers will be improved greatly when the resource sheduling is conducted after reorganizing rationally the heterogeneous demands.


2020 ◽  
Vol 76 (9) ◽  
pp. 7268-7289
Author(s):  
Kamalesh Karmakar ◽  
Rajib K. Das ◽  
Sunirmal Khatua

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xialin Liu ◽  
Junsheng Wu ◽  
Gang Sha ◽  
Shuqin Liu

Cloud data centers consume huge amount of electrical energy bringing about in high operating costs and carbon dioxide emissions. Virtual machine (VM) consolidation utilizes live migration of virtual machines (VMs) to transfer a VM among physical servers in order to improve the utilization of resources and energy efficiency in cloud data centers. Most of the current VM consolidation approaches tend to aggressive-migrate for some types of applications such as large capacity application such as speech recognition, image processing, and decision support systems. These approaches generate a high migration thrashing because VMs are consolidated to servers according to VM’s instant resource usage without considering their overall and long-term utilization. The proposed approach, dynamic consolidation with minimization of migration thrashing (DCMMT) which prioritizes VM with high capacity, significantly reduces migration thrashing and the number of migrations to ensure service-level agreement (SLA) since it keeps VMs likely to suffer from migration thrashing in the same physical servers instead of migrating. We have performed experiments using real workload traces compared to existing aggressive-migration-based solutions; through simulations, we show that our approach improves migration thrashing metric by about 28%, number of migrations metric by about 21%, and SLAV metric by about 19%.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2724 ◽  
Author(s):  
Yuan ◽  
Sun

High-energy consumption in data centers has become a critical issue. The dynamic server consolidation has significant effects on saving energy of a data center. An effective way to consolidate virtual machines is to migrate virtual machines in real time so that some light load physical machines can be turned off or switched to low-power mode. The present challenge is to reduce the energy consumption of cloud data centers. In this paper, for the first time, a server consolidation algorithm based on the culture multiple-ant-colony algorithm was proposed for dynamic execution of virtual machine migration, thus reducing the energy consumption of cloud data centers. The server consolidation algorithm based on the culture multiple-ant-colony algorithm (CMACA) finds an approximate optimal solution through a specific target function. The simulation results show that the proposed algorithm not only reduces the energy consumption but also reduces the number of virtual machine migration.


Sign in / Sign up

Export Citation Format

Share Document