refining performance
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 14)

H-INDEX

13
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6739
Author(s):  
Yanli Ma ◽  
Taili Chen ◽  
Lumin Gou ◽  
Wanwu Ding

The effects of CeO2 size on the microstructure and synthesis mechanism of Al-Ti-C alloy were investigated using a quenching experiment method. A scanning calorimetry experiment was used to investigate the synthesis mechanism of TiC, the aluminum melt in situ reaction was carried out to synthesize master alloys and its refining performance was estimated. The results show that the Al-Ti-C-Ce system is mainly composed of α-Al, Al3Ti, TiC and Ti2Al20Ce. The addition of CeO2 obviously speeds up the progress of the reaction, reduces the size of Al3Ti and TiC and lowers the formation temperature of second-phase particles. When the size of CeO2 is 2–4 μm, the promotion effect on the system is most obvious. The smaller the size of CeO2, the smaller the size of Al3Ti and TiC and the lower the formation temperature. Al-Ti-C-Ce master alloy has a significant refinement effect on commercial pure aluminum. When the CeO2 size is 2–4 μm, the grain size of commercial pure aluminum is refined to 227 μm by Al-Ti-C-Ce master alloy.


2021 ◽  
Vol 1033 ◽  
pp. 69-73
Author(s):  
Jing Wen Zhu ◽  
Jing Tao Zhao ◽  
Zong Ming Jiang ◽  
Ying Long Li

The application of ultrasonic field in the preparation of Al-Ti-C refiners can lead to the the homogenous distribution of the second phase TiAl3 and the particle phase TiC in the matrix, thus enhancing the refinement effect. In this paper, the Al-Ti-C grain refiner was successfully prepared by the ultrasonic coupling method, and its microstructure was observed. The prepared refiner was added to pure Al to verify the refining performance, and the refining mechanism was analyzed. The results indicate that the Al-Ti-C grain refiner prepared by ultrasonic field has excellent refining performance, which reduces the grain size of Al to 100 μm, and the optimum activation refining time is 3 min. The reason is that the morphology and size of the second phase TiAl3 and TiC in Al-Ti-C are changed by cavitation effect, acoustic streaming effect and thermal effect caused by high intensity ultrasonic, and the α-Al nucleates effectively under the synergistic of TiC and TiAl3 particles.


Author(s):  
Xiao-wei Han ◽  
Zong-biao Zhang ◽  
Rui-ying Zhang ◽  
Peng Wang

Abstract Al–TiO2–C–La2O3 refiners were synthesized by the in-situ exothermic dispersion method using TiO2, C, Al and La2O3 powders as raw materials. Scanning electron microscopy equipped with energy dispersive X-ray spectrometry and X-ray diffraction were used to investigate the microstructures of the Al–TiO2–C–La2O3 refiners. Commercial pure aluminum was refined by the Al–TiO2–C–La2O3 refiners, aimed at investigating refining performance and the resistance to recession. The results show that the Al–TiO2– C–La2O3 refiner with 0.2% La2O3 is composed of α-Al, blocky Al3Ti, dispersive Al2O3 and TiC, which has a better refining effect on commercial pure aluminum than the Al– TiO2–C refiner. The average grain size refined by the above refiner is about 80 μm and it performs better and has a longer refining effect. The grain structure refined by Al–TiO2– C–La2O3 becomes finer within 5 min and remains the same after 120 min, while refined by the Al–TiO2–C refiner the equivalent times are 10 min and 30 min respectively.


2021 ◽  
Vol 71 (1) ◽  
pp. 8-15
Author(s):  
Yoshimi Watanabe ◽  
Ryo Kagimoto ◽  
Soichiro Iwata ◽  
Motoko Yamada ◽  
Mami Mihara-Narita ◽  
...  

Kybernetes ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Haiyan Zhuang ◽  
Babak Esmaeilpour Ghouchani

Purpose Virtual machines (VMs) are suggested by the providers of cloud services as the services for the users over the internet. The consolidation of VM is the tactic of the competent and smart utilization of resources from cloud data centers. Placement of a VM is one of the significant issues in cloud computing (CC). Physical machines in a cloud environment are aware of the way of the VM placement (VMP) as the mapping VMs. The basic target of placement of VM issue is to reduce the physical machines' items that are running or the hosts in cloud data centers. The VMP methods have an important role in the CC. However, there is no systematic and complete way to discuss and analyze the algorithms. The purpose of this paper is to present a systematic survey of VMP techniques. Also, the benefits and weaknesses connected with selected VMP techniques have been debated, and the significant issues of these techniques are addressed to develop the more efficient VMP technique for the future. Design/methodology/approach Because of the importance of VMP in the cloud environments, in this paper, the articles and important mechanisms in this domain have been investigated systematically. The VMP mechanisms have been categorized into two major groups, including static and dynamic mechanisms. Findings The results have indicated that an appropriate VMP has the capacity to decrease the resource consumption rate, energy consumption and carbon emission rate. VMP approaches in computing environment still need improvements in terms of reducing related overhead, consolidation of the cloud environment to become an extremely on-demand mechanism, balancing the load between physical machines, power consumption and refining performance. Research limitations/implications This study aimed to be comprehensive, but there were some limitations. Some perfect work may be eliminated because of applying some filters to choose the original articles. Surveying all the papers on the topic of VMP is impossible, too. Nevertheless, the authors are trying to present a complete survey over the VMP. Practical implications The consequences of this research will be valuable for academicians, and it can provide good ideas for future research in this domain. By providing comparative information and analyzing the contemporary developments in this area, this research will directly support academics and working professionals for better knowing the growth in the VMP area. Originality/value The gathered information in this paper helps to inform the researchers with the state of the art in the VMP area. Totally, the VMP's principal intention, current challenges, open issues, strategies and mechanisms in cloud systems are summarized by explaining the answers.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 310 ◽  
Author(s):  
Wanwu Ding ◽  
Taili Chen ◽  
Xiaoyan Zhao ◽  
Yan Cheng ◽  
Xiaoxiong Liu ◽  
...  

Al-Ti-C master alloys have been widely investigated by various researchers. However, their refining effectiveness is still severely compromised by the preparation process. In this work, the aluminum melt in-situ reaction was carried out to synthesize the Al-5Ti-0.62C, and its refining performance was estimated. The thermodynamics calculation and differential scanning calorimeter experiment were used to investigate the synthesis mechanism of TiC. Quenching experiment was conducted to explore phase and microstructure transformation of the Al-5Ti-0.62C system. The results show that the main phases of Al-5Ti-0.62C master alloys are α-Al, Al3Ti, and TiC and it has a positive effect on commercial pure aluminum refining. Commercial pure aluminum is completely refined into the fine equiaxed structure by adding 0.3% Al-5Ti-0.62C master alloy. TiC particles mainly distribute in the grain interior and grain boundaries. The excess Ti came from the dissolution of Al3Ti spreading around TiC and finally forming the Ti-rich zone to promote the nucleation of α-Al. The experiments certified that TiC was formed by the reaction between solid C and excess Ti atoms. The main reactions in the Al-5Ti-0.62C system were that solid Al is transferred into liquid Al, and then liquid Al reacted with solid Ti to form the Al3Ti. At last, the release of a lot of heat promotes the formation of TiC which formed by the Ti atoms and solid C.


Sign in / Sign up

Export Citation Format

Share Document