Structural analysis of wing ribs obtained by additive manufacturing

2019 ◽  
Vol 25 (4) ◽  
pp. 708-720 ◽  
Author(s):  
Pedro Miguel Cardoso Carneiro ◽  
Pedro Gamboa

Purpose Additive manufacturing (AM) has emerged over the past years as a key technology in aircraft structural components’ manufacturing. This paper aims to describe the numerical analysis and experimental testing of five wing ribs with different 2D topologies manufactured with polylactic acid (PLA) using the fused deposition modeling technology. The main purpose is to determine the best wing rib topology in terms of strength, stiffness and mass. Design/methodology/approach Numerical analyses are performed using Ansys Workbench’s static structural analysis for two distinct loading cases. In the first loading, the chord-wise distributed load, resulting from wing lift, is replaced by two equivalent concentrated loads at the leading and trailing edges. This simplification allows the numerical results to be experimentally validated. The second loading has distributed loads applied on the upper and on the lower surfaces of the wing rib to produce a more realistic structural response. Experimental tests are performed with the first loading case to determine maximum displacement and failure loads of the wing ribs studied. SEM is used to analyze fracture surfaces. Findings From the five different PLA printed wing rib topologies studied, it is found that truss type configurations are the more structural efficient, that is, truss topologies exhibit better specific strength and specific stiffness. Additionally, the limiting factor in the design of these wing ribs is stiffness rather than strength. Originality/value The work identifies the kind of structural topologies that are best suited for 2D wing ribs obtained by AM and leads the way to more complex and more efficient structural layouts to be explored in the future using topology optimization coupled with simple Finite Element Analysis (FEA).

2019 ◽  
Vol 25 (3) ◽  
pp. 462-472 ◽  
Author(s):  
Oluwakayode Bamiduro ◽  
Gbadebo Owolabi ◽  
Mulugeta A. Haile ◽  
Jaret C. Riddick

Purpose The continual growth of additive manufacturing has increased tremendously because of its versatility, flexibility and high customization of geometric structures. However, design hurdles are presented in understanding the relationship between the fabrication process and materials microstructure as it relates to the mechanical performance. The purpose of this paper is to investigate the role of build architecture and microstructure and the effects of load direction on the static response and mechanical properties of acrylonitrile butadiene styrene (ABS) specimens obtained via the fused deposition modeling (FDM) processing technique. Design/methodology/approach Among additive manufacturing processes, FDM is a prolific technology for manufacturing ABS. The blend of ABS combines strength, rigidity and toughness, all of which are desirable for the production of structural materials in rapid manufacturing applications. However, reported literature has varied widely on the mechanical performance due to the proprietary nature of the ABS material ratio, ultimately creating a design hurdle. While prior experimental studies have studied the mechanical response via uniaxial tension testing, this study has aimed to understand the mechanical response of ABS from the materials’ microstructural point of view. First, ABS specimen was fabricated via FDM using a defined build architecture. Next, the specimens were mechanically tested until failure. Then finally, the failure structures were microstructurally investigated. In this paper, the effects of microstructural evolution on the static mechanical response of various build architecture of ABS aimed at FDM manufacturing technique was analyzed. Findings The results show that the rastering orientation of 0/90 exhibited the highest tensile strength followed by fracture at its maximum load. However, the “45” bead direction of the ABS fibers displayed a cold-drawing behavior before rupture. The morphology analyses before and after tensile failure were characterized by a scanning electron microscopy (SEM) which highlighted the effects of bead geometry (layers) and areas of stress concentration such as interstitial voids in the material during build, ultimately compromising the structural integrity of the specimens. Research limitations/implications The ability to control the constituents and microstructure of a material during fabrication is significant to improving and predicting the mechanical performance of structural additive manufacturing components. In this report, the effects of microstructure on the mechanical performance of FDM-fabricated ABS materials was discussed. Further investigations are planned in understanding the effects of ambient environmental conditions (such as moisture) on the ABS material pre- and post-fabrication. Originality/value The study provides valuable experimental data for the purpose of understanding the inter-dependency between build parameters and microstructure as it relates to the specimens exemplified strength. The results highlighted in this study are fundamental to the development of optimal design of strength and complex ultra-lightweight structure efficiency.


2019 ◽  
Vol 25 (3) ◽  
pp. 541-554 ◽  
Author(s):  
Antonio Armillotta

Purpose The purpose of this paper is to propose a method for simulating the profile of part edges as a result of the FDM process. Deviations from nominal edge shape are predicted as a function of the layer thickness and three characteristic angles depending on part geometry and build orientation. Design/methodology/approach Typical patterns of edge profiles were observed on sample FDM parts and interpreted as the effects of possible toolpath generation strategies. An algorithm was developed to generate edge profiles consistent with the patterns expected for any combination of input variables. Findings Experimental tests confirmed that the simulation procedure can correctly predict basic geometric properties of edge profiles such as frequency, amplitude and shape of periodic asperities. Research limitations/implications The algorithm takes into account only a subset of the error causes recognized in previous studies. Additional causes could be integrated in the simulation to improve the estimation of geometric errors. Practical implications Edge simulation may help avoid process choices that result in aesthetic and functional defects on FDM parts. Originality/value Compared to the statistical estimation of geometric errors, graphical simulation allows a more detailed characterization of edge quality and a better diagnosis of error causes.


2021 ◽  
Author(s):  
Prathamesh Baikerikar ◽  
Cameron J Turner

Abstract Parts built using Fused Deposition Modeling (FDM – an additive manufacturing technology) differ from their design model in terms of their microstructure and material properties. These differences lead to a certain amount of ambiguity regarding the structure, strength and stiffness of the final FDM part. Increasing use of FDM parts as end use products, necessitates accurate simulations and analyses during part design. However, analysis methods such as Finite Element Analysis, are used for analysis of continuum models, and may not accurately represent the non-continuous non-linear FDM parts. Therefore, it is necessary to determine the accuracy and precision of FEA for FDM parts. The goal of this study is to compare FEA simulations of the as-built geometries with the experimental tests of actual FDM parts. Dogbone geometries that include different infill patterns are tested under tensile loading and later simulated using FEA. This study found that FEA results are not always an accurate or reliable means of predicting FDM part behaviors.


2017 ◽  
Vol 23 (6) ◽  
pp. 1079-1087 ◽  
Author(s):  
Antonio Armillotta ◽  
Marco Cavallaro

Purpose The purpose of this paper is to discuss the problem of the geometric accuracy of edges in parts manufactured by the Fused Deposition Modeling process, as a preliminary step for an experimental investigation. Methodology/approach Three geometric variables (inclination, included and incidence angles) were defined for an edge. The influence of each variable on the geometric errors was explained with reference to specific causes related to physical phenomena and process constraints. Findings Occurrence conditions for all causes were determined and visualized in a process map, which was also developed into a software procedure for the diagnosis of quality issues on digital models of the parts. Research limitations/implications The process map was developed by only empirical considerations and does not allow to predict the amount of geometric errors. In the second part of the paper, experimental tests will help to extend and validate the prediction criteria. Practical implications As demonstrated by an example, the results allow to predict the occurrence of visible defects on the edges of a part before manufacturing it with a given build orientation. Originality/value In literature, the geometric accuracy of additively manufactured parts is only related to surface features. The paper shows that the quality of edges depends on additional variables and causes to be carefully controlled by process choices.


2020 ◽  
Vol 26 (9) ◽  
pp. 1593-1602
Author(s):  
Jorge Villacres ◽  
David Nobes ◽  
Cagri Ayranci

Purpose The purpose of this paper is to study the shape memory properties of SMP samples produced through a MEAM process. Fused deposition modeling or, as it will be referred to in this paper, material extrusion additive manufacturing (MEAM) is a technique in which polymeric materials are extruded though a nozzle creating parts via accumulation and joining of different layers. These layers are fused together to build three-dimensional objects. Shape memory polymers (SMP) are stimulus responsive materials, which have the ability to recover their pre-programmed form after being exposed to a large strain. To induce its shape memory recovery movement, an external stimulus such as heat needs to be applied. Design/methodology/approach This project investigates and characterizes the influence of print orientation and infill percentage on shape recovery properties. The analyzed shape recovery properties are shape recovery force, shape recovery speed and time elapsed before activation. To determine whether the analyzed factors produce a significant variation on shape recovery properties, t-tests were performed with a 95% confidence factor between each analyzed level. Findings Results proved that print angle and infill percentage do have a significant impact on recovery properties of the manufactured specimens. Originality/value The manufacturing of SMP objects through a MEAM process has a vast potential for different applications; however, the shape recovery properties of these objects need to be analyzed before any practical use can be developed. These have not been studied as a function of print parameters, which is the focus of this study.


Author(s):  
Guoying Dong ◽  
Daniel Tessier ◽  
Yaoyao Fiona Zhao

AbstractAdditive manufacturing (AM) has enabled great application potential in several major industries. The footwear industry can customize shoe soles fabricated by AM. In this paper, lattice structures are discussed. They are used to design functional shoe soles that can have controllable stiffness. Different topologies such as Diamond, Grid, X shape, and Vintiles are used to generate conformal lattice structures that can fit the curved surface of the shoe sole. Finite element analysis is conducted to investigate stress distribution in different designs. The fused deposition modeling process is used to fabricate the designed shoe soles. Finally, compression tests compare the stiffness of shoe soles with different lattice topologies. It is found that the plantar stress is highly influenced by the lattice topology. From preliminary calculations, it has been found that the shoe sole designed with the Diamond topology can reduce the maximum stress on the foot. The Vintiles lattice structure and the X shape lattice structure are stiffer than the Diamond lattice. The Grid lattice structure buckles in the experiment and is not suitable for the design.


2015 ◽  
Vol 21 (3) ◽  
pp. 250-261 ◽  
Author(s):  
Brian N. Turner ◽  
Scott A Gold

Purpose – The purpose of this paper is to critically review the literature related to dimensional accuracy and surface roughness for fused deposition modeling and similar extrusion-based additive manufacturing or rapid prototyping processes. Design/methodology/approach – A systematic review of the literature was carried out by focusing on the relationship between process and product design parameters and the dimensional and surface properties of finished parts. Methods for evaluating these performance parameters are also reviewed. Findings – Fused deposition modeling® and related processes are the most widely used polymer rapid prototyping processes. For many applications, resolution, dimensional accuracy and surface roughness are among the most important properties in final parts. The influence of feedstock properties and system design on dimensional accuracy and resolution is reviewed. Thermal warping and shrinkage are often major sources of dimensional error in finished parts. This phenomenon is explored along with various approaches for evaluating dimensional accuracy. Product design parameters, in particular, slice height, strongly impact surface roughness. A geometric model for surface roughness is also reviewed. Originality/value – This represents the first review of extrusion AM processes focusing on dimensional accuracy and surface roughness. Understanding and improving relationships between materials, design parameters and the ultimate properties of finished parts will be key to improving extrusion AM processes and expanding their applications.


2018 ◽  
Vol 24 (4) ◽  
pp. 698-708 ◽  
Author(s):  
Abdurahman Mushabab Al-Ahmari ◽  
Osama Abdulhameed ◽  
Awais Ahmad Khan

Purpose In additive manufacturing processes such as stereolithography and fused deposition modeling, optimal part orientation is pivotal in improving the quality of the part. This paper aims to propose an automatic and optimal part orientation system to improve part quality/accuracy in additive manufacturing, which minimizes the production time and hence reduces the cost of product. Design/methodology/approach The developed system reads STEP AP 203 E2 file from CATIA V5 and generates data extraction output file by extracting the relevant geometrical and topological data using an object-oriented approach. Afterwards, the algorithms and rules are developed to extract and recognize feature faces along with their geometric properties such as face type, face area, parallelism and perpendicularity. The feature data obtained that are used to develop feasible part orientations depend on the maximization of G&DT for all part faces. The automatic slicing is then achieved by creating slicing file using CATVBA editor inside CATIA V5. Findings After slicing, output data are exported in Excel data sheet to calculate the total additive volume of the part. The building time of the part is then calculated on the basis of machine parameters, part geometry, part height, layer thickness and amount of support volume needed to build the part. The optimal orientation of the part is achieved by maximization of G&DT value and minimization of production time. The proposed methodology is tested using an illustrative example. Originality/value Although lot of approaches have been discussed in the literature, automation of setup planning/orientation of the part in additive manufacturing is not fully attained. Therefore, the article focuses on the automation of setup planning by adding automatic feature extraction and recognition module along with the automatic slicing during setup planning. Moreover, the significance of adding feature extraction and recognition module is to achieve best accuracy for form feature faces and hence reduction in post processing machining/finishing operations.


2020 ◽  
Vol 26 (4) ◽  
pp. 707-717 ◽  
Author(s):  
John C.S. McCaw ◽  
Enrique Cuan-Urquizo

Purpose While additive manufacturing via melt-extrusion of plastics has been around for more than several decades, its application to complex geometries has been hampered by the discretization of parts into planar layers. This requires wasted support material and introduces anisotropic weaknesses due to poor layer-to-layer adhesion. Curved-layer manufacturing has been gaining attention recently, with increasing potential to fabricate complex, low-weight structures, such as mechanical metamaterials. This paper aims to study the fabrication and mechanical characterization of non-planar lattice structures under cyclic loading. Design/methodology/approach A mathematical approach to parametrize lattices onto Bèzier surfaces is validated and applied here to fabricate non-planar lattice samples via curved-layer fused deposition modeling. The lattice chirality, amplitude and unit cell size were varied, and the properties of the samples under cyclic-loading were studied experimentally. Findings Overall, lattices with higher auxeticity showed less energy dissipation, attributed to their bending-deformation mechanism. Additionally, bistability was eliminated with increasing auxeticity, reinforcing the conclusion of bending-dominated behavior. The analysis presented here demonstrates that mechanical metamaterial lattices such as auxetics can be explored experimentally for complex geometries where traditional methods of comparing simple geometry to end-use designs are not applicable. Research limitations/implications The mechanics of non-planar lattice structures fabricated using curved-layer additive manufacturing have not been studied thoroughly. Furthermore, traditional approaches do not apply due to parameterization deformations, requiring novel approaches to their study. Here the properties of such structures under cyclic-loading are studied experimentally for the first time. Applications for this type of structures can be found in areas like biomedical scaffolds and stents, sandwich-panel packaging, aerospace structures and architecture of lattice domes. Originality/value This work presents an experimental approach to study the mechanical properties of non-planar lattice structures via quasi-static cyclic loading, comparing variations across several lattice patterns including auxetic sinusoids, disrupted sinusoids and their equivalent-density quadratic patterns.


2017 ◽  
Vol 23 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Emad Abouel Nasr ◽  
Abdurahman Mushabab Al-Ahmari ◽  
Khaja Moiduddin ◽  
Mohammed Al Kindi ◽  
Ali K. Kamrani

Purpose The purpose of this paper is to demonstrate the route to digitize the customized mandible implants consisting of image acquisition, processing, implant design, fitting rehearsal and fabrication using fused deposition modeling and electron beam melting methodologies. Design/methodology/approach Recent advances in the field of rapid prototyping, reverse engineering, medical imaging and image processing have led to new heights in the medical applications of additive manufacturing (AM). AM has gained a lot of attention and interest during recent years because of its high potential in medical fields. Findings Produced mandible implants using casting, milling and machining are of standard sizes and shapes. As each person’s physique and anatomical bone structure are unique, these commercially produced standard implants are manually bent before surgery using trial and error methodology to custom fit the patient’s jaw. Any mismatch between the actual bone and the implant results in implant failure and psychological stress and pain to the patient. Originality/value The novelty in this paper is the construction of the customized mandibular implant from the computed tomography (CT) scan which includes surface reconstruction, implant design with validation and simulation of the mechanical behavior of the design implant using finite element analysis (FEA). There has been few research studies on the design and customization of the implants before surgery, but there had been hardly any study related to customized design implant and evaluating the biomechanical response on the newly designed implant using FEA. Though few studies are related to FEA on the reconstruction plates, but their paper lacks the implant design model and the reconstruction model. In this research study, an integrated framework is developed for the implant design, right from the CT scan of the patient including the softwares involved through out in the study and then performing the biomechanical study on the customized design implant to prove that the designed implant can withstand the biting and loading conditions. The proposed research methodology which includes the interactions between medical practitioners and the implant design engineers can be incorporated to any other reconstruction bone surgeries.


Sign in / Sign up

Export Citation Format

Share Document