The influence of load direction, microstructure, raster orientation on the quasi-static response of fused deposition modeling ABS

2019 ◽  
Vol 25 (3) ◽  
pp. 462-472 ◽  
Author(s):  
Oluwakayode Bamiduro ◽  
Gbadebo Owolabi ◽  
Mulugeta A. Haile ◽  
Jaret C. Riddick

Purpose The continual growth of additive manufacturing has increased tremendously because of its versatility, flexibility and high customization of geometric structures. However, design hurdles are presented in understanding the relationship between the fabrication process and materials microstructure as it relates to the mechanical performance. The purpose of this paper is to investigate the role of build architecture and microstructure and the effects of load direction on the static response and mechanical properties of acrylonitrile butadiene styrene (ABS) specimens obtained via the fused deposition modeling (FDM) processing technique. Design/methodology/approach Among additive manufacturing processes, FDM is a prolific technology for manufacturing ABS. The blend of ABS combines strength, rigidity and toughness, all of which are desirable for the production of structural materials in rapid manufacturing applications. However, reported literature has varied widely on the mechanical performance due to the proprietary nature of the ABS material ratio, ultimately creating a design hurdle. While prior experimental studies have studied the mechanical response via uniaxial tension testing, this study has aimed to understand the mechanical response of ABS from the materials’ microstructural point of view. First, ABS specimen was fabricated via FDM using a defined build architecture. Next, the specimens were mechanically tested until failure. Then finally, the failure structures were microstructurally investigated. In this paper, the effects of microstructural evolution on the static mechanical response of various build architecture of ABS aimed at FDM manufacturing technique was analyzed. Findings The results show that the rastering orientation of 0/90 exhibited the highest tensile strength followed by fracture at its maximum load. However, the “45” bead direction of the ABS fibers displayed a cold-drawing behavior before rupture. The morphology analyses before and after tensile failure were characterized by a scanning electron microscopy (SEM) which highlighted the effects of bead geometry (layers) and areas of stress concentration such as interstitial voids in the material during build, ultimately compromising the structural integrity of the specimens. Research limitations/implications The ability to control the constituents and microstructure of a material during fabrication is significant to improving and predicting the mechanical performance of structural additive manufacturing components. In this report, the effects of microstructure on the mechanical performance of FDM-fabricated ABS materials was discussed. Further investigations are planned in understanding the effects of ambient environmental conditions (such as moisture) on the ABS material pre- and post-fabrication. Originality/value The study provides valuable experimental data for the purpose of understanding the inter-dependency between build parameters and microstructure as it relates to the specimens exemplified strength. The results highlighted in this study are fundamental to the development of optimal design of strength and complex ultra-lightweight structure efficiency.

2015 ◽  
Vol 21 (3) ◽  
pp. 250-261 ◽  
Author(s):  
Brian N. Turner ◽  
Scott A Gold

Purpose – The purpose of this paper is to critically review the literature related to dimensional accuracy and surface roughness for fused deposition modeling and similar extrusion-based additive manufacturing or rapid prototyping processes. Design/methodology/approach – A systematic review of the literature was carried out by focusing on the relationship between process and product design parameters and the dimensional and surface properties of finished parts. Methods for evaluating these performance parameters are also reviewed. Findings – Fused deposition modeling® and related processes are the most widely used polymer rapid prototyping processes. For many applications, resolution, dimensional accuracy and surface roughness are among the most important properties in final parts. The influence of feedstock properties and system design on dimensional accuracy and resolution is reviewed. Thermal warping and shrinkage are often major sources of dimensional error in finished parts. This phenomenon is explored along with various approaches for evaluating dimensional accuracy. Product design parameters, in particular, slice height, strongly impact surface roughness. A geometric model for surface roughness is also reviewed. Originality/value – This represents the first review of extrusion AM processes focusing on dimensional accuracy and surface roughness. Understanding and improving relationships between materials, design parameters and the ultimate properties of finished parts will be key to improving extrusion AM processes and expanding their applications.


2017 ◽  
Vol 23 (6) ◽  
pp. 973-982 ◽  
Author(s):  
Hao Li ◽  
Shuai Zhang ◽  
Zhiran Yi ◽  
Jie Li ◽  
Aihua Sun ◽  
...  

Purpose This work aims to evaluate the influence of rheological properties of building materials on the bonding quality and ultimate tensile strength in the fused deposition modeling (FDM) process, through the investigation of parts printed by semi-crystalline and amorphous resins. Little information is currently available about the influence of the crystalline nature on FDM-printed part quality. Design/methodology/approach Semi-crystalline polyamide 12 and amorphous acrylonitrile butadiene styrene (ABS) were used to assess the influence of rheological properties on bonding quality and the tensile strength, by varying three important process parameters: materials, liquefier temperature and raster orientation. A fractography of both tensile and freeze-fractured samples was also investigated. Findings The rheological properties, mainly the melt viscosity, were found to have a significant influence on the bonding quality of fused filaments. Better bonding quality and higher tensile strength of FDM parts printed with semi-crystalline PA12, as compared with amorphous ABS, are suggested to be a result of higher initial sintering rates owing to the lower melt viscosity of PA12 at low shear rates. Near-full dense PA12 parts were obtained by FDM. Originality/value This project provides a variety of data and insight regarding the effect of materials properties on the mechanical performance of FDM-printed parts. The results showed that FDM technique allows the production of PA12 parts with adequate mechanical performance, overcoming the greatest limitation of a dependence on amorphous thermoplastics as a feedstock for the production of prototypes.


2018 ◽  
Vol 24 (2) ◽  
pp. 379-394 ◽  
Author(s):  
Che-Chih Tsao ◽  
Ho-Hsin Chang ◽  
Meng-Hao Liu ◽  
Ho-Chia Chen ◽  
Yun-Tang Hsu ◽  
...  

Purpose The purpose of this paper is to propose and demonstrate a new additive manufacturing approach that breaks the layer-based point scanning limitations to increase fabrication speed, obtain better surface finish, achieve material flexibility and reduce equipment costs. Design/methodology/approach The freeform additive manufacturing approach conceptually views a 3D article as an assembly of freeform elements distributed spatially following a flexible 3D assembly structure, which conforms to the surface of the article and physically builds the article by sequentially forming the freeform elements by a vari-directional vari-dimensional capable material deposition mechanism. Vari-directional building along tangential directions of part surface gives surface smoothness. Vari-dimensional deposition maximizes material output to increase build rate wherever allowed and minimizes deposition sizes for resolution whenever needed. Findings Process steps based on geometric and data processing considerations were described. Dispensing and forming of basic vari-directional and vari-dimensional freeform elements and basic operations of joining them were developed using thermoplastics. Forming of 3D articles at build rates of 2-5 times the fused deposition modeling (FDM) rate was demonstrated and improvement over ten times was shown to be feasible. FDM compatible operations using 0.7 mm wire depositions from a variable exit-dispensing unit were demonstrated. Preliminary tests of a surface finishing process showed a result of 0.8-1.9 um Ra. Initial results of dispensing wax, tin alloy and steel were also shown. Originality/value This is the first time that both vari-directional and vari-dimensional material depositions are combined in a new freeform building method, which has potential impact on the FDM and other additive manufacturing methods.


2019 ◽  
Vol 25 (7) ◽  
pp. 1145-1154 ◽  
Author(s):  
Xia Gao ◽  
Daijun Zhang ◽  
Xiangning Wen ◽  
Shunxin Qi ◽  
Yunlan Su ◽  
...  

Purpose This work aims to develop a new kind of semicrystalline polymer filament and optimize its printing parameters in the fused deposition modeling process. The purpose of this work also includes producing FDM parts with good ductility. Design/methodology/approach A new kind of semicrystalline filaments composed of long-chain polyamide (PA)1012 was prepared by controlling screw speed and pulling speed carefully. The optimal printing parameters for PA1012 filaments were explored through investigating dimensional accuracy and bonding strength of FDM parts. Furthermore, the mechanical properties of PA1012 specimens were also evaluated by varying nozzle temperatures and raster angles. Findings It is found that PA1012 filaments can accommodate for FDM process under suitable printing parameters. The print quality and mechanical properties of FDM parts highly depend on nozzle temperature and bed temperature. Even though higher temperatures facilitate stronger interlayer bonding, FDM parts with excellent tensile strength were obtained at a moderate nozzle temperature. Moreover, a bed temperature well above the glass transition temperature of PA1012 can eliminate shrinkage and distortion of FDM parts. As expected, FDM parts prepared with PA1012 filaments exhibit good ductility. Originality/value Results in this work demonstrate that the PA1012 filament allows the production of FDM parts with desired mechanical performance. This indicates the potential for overcoming the dependence on amorphous thermoplastics as a feedstock in the FDM technique. This work also provides insight into the effect of materials properties on the mechanical performance of FDM-printed parts.


2014 ◽  
Vol 20 (3) ◽  
pp. 192-204 ◽  
Author(s):  
Brian N. Turner ◽  
Robert Strong ◽  
Scott A. Gold

Purpose – The purpose of this paper is to systematically and critically review the literature related to process design and modeling of fused deposition modeling (FDM) and similar extrusion-based additive manufacturing (AM) or rapid prototyping processes. Design/methodology/approach – A systematic review of the literature focusing on process design and mathematical process modeling was carried out. Findings – FDM and similar processes are among the most widely used rapid prototyping processes with growing application in finished part manufacturing. Key elements of the typical processes, including the material feed mechanism, liquefier and print nozzle; the build surface and environment; and approaches to part finishing are described. Approaches to estimating the motor torque and power required to achieve a desired filament feed rate are presented. Models of required heat flux, shear on the melt and pressure drop in the liquefier are reviewed. On leaving the print nozzle, die swelling and bead cooling are considered. Approaches to modeling the spread of a deposited road of material and the bonding of polymer roads to one another are also reviewed. Originality/value – To date, no other systematic review of process design and modeling research related to melt extrusion AM has been published. Understanding and improving process models will be key to improving system process controls, as well as enabling the development of advanced engineering material feedstocks for FDM processes.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kapil Chawla ◽  
Rupinder Singh ◽  
Jaspreet Singh

Purpose The thermoplastic polymers do not decompose easily due to the presence of long-chain stable polymeric structure, and thus, causes serious effects on the environment. Recycling of these polymer wastes becomes the only solution to minimize their adverse effects on the environment. The purpose of this study was to explore the feasibility of using recycled thermoplastic material as filament for fused deposition modeling technique. Design/methodology/approach In this study, the researchers fabricated fused filaments (in-house) for fused deposition modeling (FDM) technique of additive manufacturing from secondary recycled acrylonitrile butadiene styrene (ABS) by using a twin-screw extruder. After measuring the melt flow index of the secondary recycled ABS, the twin-screw extrusion parameters (rpm/speed of the screw, extrusion temperature and load) were varied to predict their influence on the various properties (rheological/mechanical/thermal) of the fabricated filaments. Experimental work was executed as per Taguchi’s L9 orthogonal array. Findings Thermal analysis performed to estimate the heat carrying capacity of recycled ABS highlighted that the heat capacity of ABS increases significantly from 0.28 J/g to 3.94 J/g during the heating cycle. The maximum value of peak strength and percentage break elongation for the fused filaments was investigated at 12.5 kg load, 2,250 C extrusion temperature and 70 rpm speed. Originality/value The filaments fabricated by recycling the polymeric waste has been successfully used in the FDM machine for the preparation of the three-dimensional printed tensile specimen.


Author(s):  
Arash Alex Mazhari ◽  
Randall Ticknor ◽  
Sean Swei ◽  
Stanley Krzesniak ◽  
Mircea Teodorescu

AbstractThe sensitivity of additive manufacturing (AM) to the variability of feedstock quality, machine calibration, and accuracy drives the need for frequent characterization of fabricated objects for a robust material process. The constant testing is fiscally and logistically intensive, often requiring coupons that are manufactured and tested in independent facilities. As a step toward integrating testing and characterization into the AM process while reducing cost, we propose the automated testing and characterization of AM (ATCAM). ATCAM is configured for fused deposition modeling (FDM) and introduces the concept of dynamic coupons to generate large quantities of basic AM samples. An in situ actuator is printed on the build surface to deploy coupons through impact, which is sensed by a load cell system utilizing machine learning (ML) to correlate AM data. We test ATCAM’s ability to distinguish the quality of three PLA feedstock at differing price points by generating and comparing 3000 dynamic coupons in 10 repetitions of 100 coupon cycles per material. ATCAM correlated the quality of each feedstock and visualized fatigue of in situ actuators over each testing cycle. Three ML algorithms were then compared, with Gradient Boost regression demonstrating a 71% correlation of dynamic coupons to their parent feedstock and provided confidence for the quality of AM data ATCAM generates.


2017 ◽  
Vol 23 (4) ◽  
pp. 804-810 ◽  
Author(s):  
Shiqing Cao ◽  
Dandan Yu ◽  
Weilan Xue ◽  
Zuoxiang Zeng ◽  
Wanyu Zhu

Purpose The purpose of this paper is to prepare a new modified polybutylene terephalate (MPBT) for fused deposition modeling (FDM) to increase the variety of materials compatible with printing. And the printing materials can be used to print components with a complex structure and functional mechanical parts. Design/methodology/approach The MPBT, poly(butylene terephalate-co-isophthalate-co-sebacate) (PBTIS), was prepared for FDM by direct esterification and subsequent polycondensation using terephthalic acid (PTA), isophthalic acid (PIA), sebacic acid (SA) and 1,4-butanediol (BDO). The effects of the content of PIA (20-40 mol%) on the mechanical properties of PBTIS were investigated when the mole per cent of SA (αSA) is zero. The effects of αSA (0-7mol%) on the thermal, rheological and mechanical properties of PBTIS were investigated at nPTA/nPIA = 7/3. A desktop wire drawing and extruding machine was used to fabricate the filaments, whose printability and anisotropy were tested by three-dimensional (3D) printing experiments. Findings A candidate content of PIA introducing into PBT was obtained to be about 30 per cent, and the Izod notched impact strength of PBTIS increased with the increase of αSA. The results showed that the PBTIS (nPTA/nPIA = 7/3, αSA = 3-5mol%) is suitable for FDM. Originality/value New printing materials with good Izod notched impact strength were obtained by introducing PIA and SA (nPTA/nPIA = 7/3, αSA = 3-5 mol%) into PBT and their anisotropy are better than that of ABS.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Iman Sedighi ◽  
Majid R. Ayatollahi ◽  
Bahador Bahrami ◽  
Marco A. Pérez-Martínez ◽  
Andrés A. Garcia-Granada

Purpose The purpose of this paper is to study the Mode I fracture behavior of polycarbonate (PC) parts produced using fused deposition modeling (FDM). The focus of this study is on samples printed along the out-of-plane direction with different raster angles. Design/methodology/approach Tensile and Mode I fracture tests were conducted. Semi-circular bend specimens were used for the fracture tests, which were printed in four different raster patterns of (0/90), (15/−75) (30/−60) and (45/−45). Moreover, the finite element method (FEM) was used to determine the applicability of linear elastic fracture mechanics (LEFM) for the printed PC parts. The fracture toughness results, as well as the fracture path and the fracture surfaces, were studied to describe the fracture behavior of the samples. Findings Finite element results confirm that the use of LEFM is allowed for the tested PC samples. The fracture toughness results show that changing the direction of the printed rasters can have an effect of up to 50% on the fracture toughness of the printed parts, with the (+45/−45) and (0/90) orientations having the highest and lowest resistance to crack propagation, respectively. Moreover, except for the (0/90) orientation, the other samples have higher crack resistance compared to the bulk material. The fracture toughness of the tested PC depends more on the toughness of the printed sample, rather than its tensile strength. Originality/value The toughness and the energy absorption capability of the printed samples (with different raster patterns) were identified as the main properties affecting the fracture toughness of the AM PC parts. Because the fracture resistance of almost all the samples was higher than that of the base material, it is evident that by choosing the right raster patterns for 3D-printed parts, very high resistance to crack growth may be obtained. Also, using FEM and comparing the size of the plastic zones, it was concluded that, although the tensile curves show nonlinearity, LEFM is still applicable for the printed parts.


Sign in / Sign up

Export Citation Format

Share Document