Developing Composite Indices for Assessing Vulnerability to Floods due to Climate Change: Applying the Order Rated Effectiveness Modeling Method

Author(s):  
Ronald Klimberg ◽  
Samuel Ratick
2019 ◽  
Vol 11 (9) ◽  
pp. 1132 ◽  
Author(s):  
Shasha Wang ◽  
Deyong Hu ◽  
Shanshan Chen ◽  
Chen Yu

Anthropogenic heat (AH) generated by human activities has a major impact on urban and regional climate. Accurately estimating anthropogenic heat is of great significance for studies on urban thermal environment and climate change. In this study, a gridded anthropogenic heat flux (AHF) estimation scheme was constructed based on socio-economic data, energy-consumption data, and multi-source remote sensing data using a partition modeling method, which takes into account the regional characteristics of AH emission caused by the differences in regional development levels. The refined AHF mapping in China was realized with a high resolution of 500 m. The results show that the spatial distribution of AHF has obvious regional characteristics in China. Compared with the AHF in provinces, the AHF in Shanghai is the highest which reaches 12.56 W·m−2, followed by Tianjin, Beijing, and Jiangsu. The AHF values are 5.92 W·m−2, 3.35 W·m−2, and 3.10 W·m−2, respectively. As can be seen from the mapping results of refined AHF, the high-value AHF aggregation areas are mainly distributed in north China, east China, and south China. The high-value AHF in urban areas is concentrated in 50–200 W·m−2, and maximum AHF in Shenzhen urban center reaches 267 W·m−2. Further, compared with other high resolution AHF products, it can be found that the AHF results in this study have higher spatial heterogeneity, which can better characterize the emission characteristics of AHF in the region. The spatial pattern of the AHF estimation results correspond to the distribution of building density, population, and industry zone. The high-value AHF areas are mainly distributed in airports, railway stations, industry areas, and commercial centers. It can thus be seen that the AHF estimation models constructed by the partition modeling method can well realize the estimation of large-scale AHF and the results can effectively express the detailed spatial distribution of AHF in local areas. These results can provide technical ideas and data support for studies on surface energy balance and urban climate change.


2020 ◽  
Vol 12 (7) ◽  
pp. 2615
Author(s):  
Chiedza Zvirurami Tsvakirai ◽  
Teboho Jeremiah Mosikari

The Sustainable Development Goals (SDGs) have shone a spotlight on the importance of adaption to climate change. However, progress in achieving SDG 12 which calls for, “responsible consumption and production” has been stalled by the unavailability of indicators that adequately capture and motivate increased responsible consumption. To fill this gap, this article presents an alternative indicator that makes use of cultivar characteristics and uses South African fresh peach and nectarine exports as a focus area. Principal component analysis is used to extract and summarize the product value propositions identified in composite indices that were constructed by weighting the proportional use of cultivars in exports between 1956 and 2017. The indices acquired from the analysis were found to measure the provisions for sustainable consumption, good-quality fruit and off-peak fruit supply. The study’s results show that progress was found in the provisions for sustainable consumption and this was mainly driven by improvements in cultivars’ climate change adaptability. However, the last two decades have been characterized by years of successive lower readings on this index. Improvements in fruit quality index were found to be attained at the expense of farm enterprise productivity. The study concludes that strategies be developed to encourage the use of cultivars that promote responsible consumption as, if left uninfluenced, market forces will spur unsustainable production.


Climate ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 106
Author(s):  
Demamu Mesfin ◽  
Belay Simane ◽  
Abrham Belay ◽  
John W. Recha ◽  
Ute Schmiedel

This paper explores the different components of the adaptive capacity of households in the Central Rift Valley (CRV) of Ethiopia and quantifies their relative contributions. The data were derived from a survey of 413 households randomly selected from four Kebeles (the smallest government administrative units) in the CRV. The adaptive capacity of the households was assessed using the Local Adaptive Capacity (LAC) framework and measured in terms of both aggregate and composite indices, with sixty indicators distributed across five major components and subcomponents. The index score for major components shows that intangible variables such as institutions and entitlements, knowledge and information, and innovation contributed to adaptive capacity better than decision–making and governance and asset–base. The composite indices for sub–components showed that the contribution of woodlands to adaptive capacity was positive and superior to other natural assets. Grazing land was the next best contributor, while farmland and water resources made a much lower contribution. The findings of this study are useful to better understand the nature of adaptive capacity and its components at the household level. This study suggests the need for an integrated assessment and enhancement of adaptive capacity with all its components rather than focusing only on asset possession as an indicator of adaptive capacity.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2001 ◽  
Vol 70 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Robert Moss ◽  
James Oswald ◽  
David Baines

Sign in / Sign up

Export Citation Format

Share Document