Seasonal variations and risk assessment of heavy metals in PM2.5 from Handan, China

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hongya Niu ◽  
Zhenxiao Wu ◽  
Fanli Xue ◽  
Zhaoce Liu ◽  
Wei Hu ◽  
...  

Purpose This study aims to acquire a better understanding on the characteristics and risks of heavy metals (HMs) in PM2.5 from an industrial city – Handan, China. Design/methodology/approach PM2.5 samples were collected on the basis of daytime and nighttime at the state controlling air sampling site in Handan city. Ten metal elements (V, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Cd and Ba) in PM2.5 were determined with an inductively coupled plasma mass spectrometry. The pollution levels of metals were characterized by enrichment factors, and the sources of metals were identified with principle component analysis and cluster analysis. The ecological and health risks of metals were assessed using ecological and health risk indexes. Findings Results showed that the highest and lowest PM2.5 concentration appeared in winter and summer, respectively. The concentration of PM2.5 at night was higher than in the daytime in winter, yet it is the opposite in other seasons. The total mass concentration of detected metals was the highest in winter, and the total mass concentration in the daytime was higher than at night in all four seasons. The elements V, Rb, Sr and Ba exhibited a deficient contamination level; Cr, Ni and Cu exhibited a moderate contamination level; while Fe and Cd were at an extreme contamination level. The metals in PM2.5 originated from a mixture source of fossil fuel combustion and manufacture and use of metallic substances (34.04%), natural source (26.01%) and construction and traffic-related road dust (17.58%). Results from the ecological risk model showed that the ecological risk of metals was very high, especially risks related to Cd. Health risk model presented that both the non-carcinogenic and carcinogenic risk coefficients of metals were above the tolerance level of the human body. Originality/value The significance of the study is to further know the pollution characteristics of PM2.5 and related HMs in Handan city, and to provide references for ensuring local resident health and ecological environment.

Author(s):  
Romanus A. Obasi ◽  
Henry Y. Madukwe

Heavy metals on the soil around an abandoned battery site at Wofun, Ibadan, Southwestern, Nigeria were studied for their ecological and health risks. Ten soil samples collected from the soil around the abandoned battery sites were analyzed using Inductively Coupled Plasma –Mass spectrometry (ICP-MS). The data were evaluated using indices such as contamination factor, enrichment factor, geo-accumulation index and pollution index to determine the ecological and health risks posed by the heavy metals. The results showed an average concentration of Pb (7274.4), V (190.63), Cu (77.52), Zn (53.08) and Co (53) in a decreasing order. The enrichment factor revealed high enrichment for Co (12.30) at site one (S1), and extreme enrichment of Pb (61.12). Zn, Rb and Mo showed no enrichment in the soil. All the sites exhibited extremely high enrichment of Pb except at S10 where the enrichment of Pb was only severe. The results of Igeo indicated that all the sites were strongly to extremely polluted by Pb while S6 is moderately polluted by Co. The rest of the metals do not constitute any pollution threats. An evaluation of the ecological risk index (RI) revealed that the mean Er for Co (13.95), Cu (8.61), and Zn (0.56) indicate low ecological risk as they are less than 40 (Er <40).  Lead (Pb) with Er value of 1818.60 has a very high ecological risk and accounts for most of the ecological risks in the study area. Lead (Pb) being the most toxic and abundant of all the heavy metals analyzed in the study areas was used to evaluate the potential  non-carcinogenic health risk for both children and adults. The hazard index which is the sum of the hazard quotients for children is 26.64 suggesting that non-carcinogenic health risk may occur if there is any form of exposure to the soil. The hazard index for the adult (2.87) indicated a significant potential non-carcinogenic health risk in the study area.


2021 ◽  
Vol 11 (29) ◽  
Author(s):  
Shweta Kumari ◽  
Manish Kumar Jain ◽  
Suresh Pandian Elumalai

Background. The rise in particulate matter (PM) concentrations is a serious problem for the environment. Heavy metals associated with PM10, PM2.5, and road dust adversely affect human health. Different methods have been used to assess heavy metal contamination in PM10, PM2.5, and road dust and source apportionment of these heavy metals. These assessment tools utilize pollution indices and health risk assessment models. Objectives. The present study evaluates the total mass and average concentrations of heavy metals in PM10, PM2.5, and road dust along selected road networks in Dhanbad, India, analyzes the source apportionment of heavy metals, and assesses associated human health risks. Methods. A total of 112 PM samples and 21 road dust samples were collected from six stations and one background site in Dhanbad, India from December 2015 to February 2016, and were analyzed for heavy metals (iron (Fe), lead (Pb), cadmium (Cd), nickel (Ni), copper (Cu), chromium (Cr), and zinc (Zn)) using atomic absorption spectrophotometry. Source apportionment was determined using principal component analysis. A health risk assessment of heavy metal concentrations in PM10, PM2.5, and road dust was also performed. Results. The average mass concentration was found to be 229.54±118.40 μg m−3 for PM10 and 129.73 ±61.74 μg m−3 for PM2.5. The average concentration of heavy metals was found to be higher in PM2.5 than PM10. The pollution load index value of PM10 and PM2.5 road dust was found to be in the deteriorating category. Vehicles were the major source of pollution. The non-carcinogenic effects on children and adults were found to be within acceptable limits. The heavy metals present in PM and road dust posed a health risk in the order of road dust&gt; PM10&gt; and PM2.5. Particulate matter posed higher health risks than road dust due to particle size. Conclusions. The mass concentration analysis indicates serious PM10 and PM2.5 contamination in the study area. Vehicle traffic was the major source of heavy metals in PM10, PM2.5, and road dust. In terms of non-carcinogenic risks posed by heavy metals in the present study, children were more affected than adults. The carcinogenic risk posed by the heavy metals was negligible. Competing Interests. The authors declare no competing financial interests


2020 ◽  
Vol 122 (10) ◽  
pp. 3099-3114
Author(s):  
Pravina Jeevanaraj ◽  
Aliah Ahmad Foat ◽  
Halimah Tholib ◽  
Nurul Izzah Ahmad

PurposeMalaysians are the highest seafood consumers in the region; be it fresh or processed. Environmental pollution has put the safety of seafood at stake, heavy metals among others. This study was done to assess the health risk associated with selected heavy metals ingestion from processed seafood.Design/methodology/approachThe most preferred processed seafood type and the intake rates were determined from a cross-sectional survey among communities in Shah Alam, Selangor (n = 90). The processed seafood were then purchased from local traders (n = 81), underwent homogenization, acid digestion (0.5 g) in Multiwave 3,000 and heavy metal quantitation (Hg, Pb, Cd, As) using ICP-MS. Estimated weekly ingestion (EWI), hazard quotient (HQ), hazard index (HI), lifetime cancer risk (LCR), and target risk (TR) were used to estimate the risk associated with processed seafood consumption.FindingsArsenic was the highest metal detected, acetes topping the list (10.05 ± 0.02 mg/kg). Mercury was detected at significantly higher level in salted fourfinger threadfin (0.88 ± 0.09 mg/kg) while Pb and Cd in toli shad (2.67 ± 0.16 mg/kg; 0.32 ± 0.22 mg/kg). Non-cancer risk was estimated for consumption of dried/salted food types with hazard index (HI) anchoives (5.2) > salted fourfinger threadfin (1.8) > toli shad (1.7). Besides, an unacceptable cancer risk was estimated for all food types for continuous consumption (Total risk (TR) > 10–4), except the dried acetes.Research limitations/implicationsThis study implies that although the concentration of most heavy metals were well below the permitted value, significant amount of risk present for consumption of several species. In addition, for selected heavy metals such as Hg and As, speciation analysis followed by risk assessment would provide a clearer picture.Practical implicationsThere is a need to refer back to the local permissible level of heavy metals in processed seafood and formulate safe consumption guide.Social implicationsThe food types are advised to be consumed with caution especially by the sensitive group.Originality/valueThis study estimated the risk of cancer and other non-cancer disease from processed seafood consumption among Malaysian women.


2021 ◽  
Author(s):  
Fangfang Miao ◽  
Yimei Zhang ◽  
Shuai Li ◽  
Yaxiao Duan ◽  
Yuxian Lai ◽  
...  

Abstract Soil heavy metal contaminated sites with multiple sources of pollution have caused worldwide public concern. However, the lack of correlation of risk assessment or source identification of heavy metal leads to unclear direction of source governance. Although previous studies have involved different risk assessment, few attempts have been made to establish a link between them. In order to design a comprehensive risk assessment system, it is necessary to identify the specific source risks and the correlation and comparison between environmental risk assessment. In this paper, a methodology was established by combining source apportionment of ecological risks and human health risks (SERA) to characterize the sources and source-specific risks of heavy metals in soil. Positive matrix factorization (PMF) model was used to identify and classify potential sources of heavy metals in the study area. According to the results, they will be incorporated into the environmental risk model to evaluate environmental risk of the identified sources of heavy metals. The results showed that concentrations of Cd and Hg were highly above the background values, indicating a moderate enrichment. It was worth noting that the source contributed ecological risk index (SCEI) of Hg, with the value of 51.16 contributed mainly by the pollutant sources of waste treatment, has reached moderate ecological risk. The SCEI of Cd contributed by industrial activities (the wastewater and dyeing process) showed the most predominant source of contribution. The source contributed human health risk index (SCHI) of As contributed most by pollutant sources of agriculture activities. Overall, the modified total health risk posed by soil heavy metals SCHI was 1.11E+00, showing potential risk to the residents. This study provides a new insight for the treatment of mutil-sources of soil heavy metal pollution and also some reference value for the improvement of the risk assessment system.the main finding: Exploring a methodology (SERA) to quantitatively characterize the relationship between pollutants sources and environmental risk assessment based on source contribution.


2017 ◽  
Vol 15 (1) ◽  
pp. 272-282 ◽  
Author(s):  
Joshua N. Edokpayi ◽  
John O. Odiyo ◽  
Elizabeth O. Popoola ◽  
Titus A.M. Msagati

AbstractSurface water is often used as alternative source of drinking water in many regions of the world where the potable water supply is erratic or not present. The concentration of heavy metals was assessed using an Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES). The impact of temporary seasonal variation on the contamination level was also assessed. Contamination factor (CF) and Hakanson’s potential ecological risk (Er and RI) indices were used to evaluate the toxicity levels of the metals in the sediments of the river. Higher concentrations of Fe, Mn, Pb, Cu and Zn were determined in the dry season in the river water whereas in the sediments higher levels were recorded for Al, Fe, Cd, Cr, Cu and Zn in the wet season. The average CF values for all the metals showed a low contamination level in the sediment, except for Cu and Cd which had moderate and considerable contamination levels, respectively. Similarly, Cu showed a moderate ecological risk level (Er = 62.90) only in March 2014, for other months Cu and the other metals investigated had Er values < 40 which implies low ecological risk. The mean relative abundance of heavy metals in the sediments follows the trend Al>Fe>Mn>u>Zn>Cr>Pb>Cd.


2019 ◽  
Vol 42 (5) ◽  
pp. 1453-1467 ◽  
Author(s):  
Anna Twaróg ◽  
Magdalena Mamak ◽  
Henryk Sechman ◽  
Piotr Rusiniak ◽  
Ewelina Kasprzak ◽  
...  

Abstract The following research describes the influence of a metallurgical ash dump on both the soil environment and the atmosphere. Soil samples were collected along a line positioned on an unprotected, hazardous ash dump and extended into the adjacent, arable land. Three soil depths were sampled at 0–20-, 20–40- and 40–60-cm depth intervals, and in each sample, pseudo-total concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb, Ti, Zn, Li, Sr and V were analyzed. Additionally, emissions of CH4 and CO2 were measured at each sampling site. All emission measurements were taken in the same day, and the duration of gas measurements in each place was six minutes. The results demonstrate elevated concentrations of Cu, Cr, Pb and Zn on dump surface and along its margins, where the maximum concentrations of these elements are, respectively, 82, 23, 1144 and 8349 mg kg−1. Obtained results exceed several times both the natural background values and the values typical of local soils in the southern Poland. Moreover, natural background values for Fe, Mn, Ni, Li, Sr and V were exceeded, as well. Along the sampling line, no methane emission was detected, whereas the carbon dioxide flux varied from 7 to 42 g m−2 d−1. The reconnaissance study of the ash dump revealed a high contamination level of soils with heavy metals, which, together with the changes of soil environment, may cause migration of pollutants into the adjacent areas and, consequently, may generate hazard to the environment and, particularly, to the living organisms. Hence, further studies are necessary in order to evaluate the soil quality and the leaching of heavy metals from the dump.


Sign in / Sign up

Export Citation Format

Share Document