Prediction Based Combined Control to Prevent the Rollover of Heavy Vehicles

Author(s):  
P. Gaspar ◽  
Z. Szabo ◽  
J. Bokor
2004 ◽  
Vol 10 (2) ◽  
pp. 148-162 ◽  
Author(s):  
Peter Gaspar ◽  
Istvan Szaszi ◽  
Jozsef Bokor

Author(s):  
Sadegh Vaez-Zadeh

In this chapter, three control methods recently developed for or applied to electric motors in general and to permanent magnet synchronous (PMS) motors, in particular, are presented. The methods include model predictive control (MPC), deadbeat control (DBC), and combined vector and direct torque control (CC). The fundamental principles of the methods are explained, the machine models appropriate to the methods are derived, and the control systems are explained. The PMS motor performances under the control systems are also investigated. It is elaborated that MPC is capable of controlling the motor under an optimal performance according to a defined objective function. DBC, on the other hand, provides a very fast response in a single operating cycle. Finally, combined control produces motor dynamics faster than one under VC, with a smoother performance than the one under DTC.


2021 ◽  
Vol 13 (7) ◽  
pp. 3765
Author(s):  
Benxi Hu ◽  
Fei Tang ◽  
Dichen Liu ◽  
Yu Li ◽  
Xiaoqing Wei

The doubly-fed induction generator (DFIG) uses the rotor’s kinetic energy to provide inertial response for the power system. On this basis, this paper proposes an improved torque limit control (ITLC) strategy for the purpose of exploiting the potential of DFIGs’ inertial response. It includes the deceleration phase and acceleration phase. To shorten the recovery time of the rotor speed and avoid the second frequency drop (SFD), a small-scale battery energy storage system (BESS) is utilized by the wind-storage combined control strategy. During the acceleration phase of DFIG, the BESS adaptively adjusts its output according to its state of charge (SOC) and the real-time output of the DFIG. The simulation results prove that the system frequency response can be significantly improved through ITLC and the wind-storage combined control under different wind speeds and different wind power penetration rates.


2015 ◽  
Vol 743 ◽  
pp. 526-532 ◽  
Author(s):  
C.M. Jiang ◽  
J.J. Lu ◽  
L.J. Lu

Based on the originally unprocessed data from the Official Platform of“110”Alarming Receiving Center (OP110ARC) of Shanghai Public Security Bureau (SPSB), 529 single-vehicle crashes reported during one year and a half which happened at the thirteen urban road tunnels going across the Huangpu River are used in this study. To investigate the factors affecting the crash influence severity levels, ordered probit regression is established. Several categories of factors are considered as explanatory variables in the models. The study finds that the entrance of the tunnels is the site where severe injury crashes trend to occur. Rainy and snowy days impose vehicles and motorists driving via the tunnel sections in danger. Tunnels with a low speed limit (40 km/h in this study) may be not as safe as we thought before. Two-wheel vehicles without sufficient physical protection for its drivers and heavy vehicles also show a negative effect on the operation safety of single-vehicle at these studied tunnels. Alcohol involved drivers are more likely to suffer from a severe crashes and gets badly hurt.


Sign in / Sign up

Export Citation Format

Share Document