scholarly journals Study of the effect of transport current and combined transverse and longitudinal fields on the AC loss in NET prototype conductors

1994 ◽  
Vol 30 (4) ◽  
pp. 2006-2009 ◽  
Author(s):  
A. Nijhuis ◽  
H.J. ten Kate
2003 ◽  
Vol 13 (2) ◽  
pp. 2368-2371 ◽  
Author(s):  
H. Tonsho ◽  
S. Fukui ◽  
T. Sato ◽  
M. Yamaguchi ◽  
S. Torii ◽  
...  

2006 ◽  
Vol 16 (2) ◽  
pp. 115-118 ◽  
Author(s):  
J. Ogawa ◽  
S. Fukui ◽  
M. Yamaguchi ◽  
T. Sato ◽  
Y. Kobayashi ◽  
...  

2006 ◽  
Vol 946 ◽  
Author(s):  
Francesco Grilli ◽  
Stephen P. Ashworth ◽  
Svetlomir Stavrev

ABSTRACTPractical applications of YBCO coated conductors (CC) involving superconducting coils will utilize tapes packed together in an arrangement resembling a vertical stack. In such configuration there is an important electromagnetic interaction between the tapes, which strongly influences the loss characteristic of the device.In the presence of an external magnetic field, the losses are reduced compared to an isolated tape because of the reduced aspect ratio of the conductor and, at least for low fields, because of an effective screening of the central part of the stack. On the contrary, in the case of AC transport current, the losses tend to increase due to the enhancement of the local field caused by the interaction of the self-field produced by neighboring tapes. In practical situations the conductor is usually subjected to both transport current and magnetic field, so that there is a trade-off between the two effects.In this paper we investigate, both experimentally and by means of finite-element method calculations, the ac loss behavior of a stack composed by a finite number of tapes in different working conditions, and we compare the AC losses to the ones of non-interacting tapes in order to determine if the use of stacked tapes is advantageous from the point of view of power dissipation.


2021 ◽  
Author(s):  
MD Ainslie ◽  
Christopher Bumby ◽  
Zhenan Jiang ◽  
R Toyomoto ◽  
N Amemiya

The use of superconducting wire within AC power systems is complicated by the dissipative interactions that occur when a superconductor is exposed to an alternating current and/or magnetic field, giving rise to a superconducting AC loss caused by the motion of vortices within the superconducting material. When a superconductor is exposed to an alternating field whilst carrying a constant DC transport current, a DC electrical resistance can be observed, commonly referred to as ‘dynamic resistance.’ Dynamic resistance is relevant to many potential hightemperature superconducting (HTS) applications and has been identified as critical to understanding the operating mechanism of HTS flux pump devices. In this paper, a 2D numerical model based on the finite-element method and implementing the H-formulation is used to calculate the dynamic resistance and total AC loss in a coated-conductor HTS wire carrying an arbitrary DC transport current and exposed to background AC magnetic fields up to 100 mT. The measured angular dependence of the superconducting properties of the wire are used as input data, and the model is validated using experimental data for magnetic fields perpendicular to the plane of the wire, as well as at angles of 30° and 60° to this axis. The model is used to obtain insights into the characteristics of such dynamic resistance, including its relationship with the applied current and field, the wire’s superconducting properties, the threshold field above which dynamic resistance is generated and the flux-flow resistance that arises when the total driven transport current exceeds the field-dependent critical current, Ic(B), of the wire. It is shown that the dynamic resistance can be mostly determined by the perpendicular field component with subtle differences determined by the angular dependence of the superconducting properties of the wire. The dynamic resistance in parallel fields is essentially negligible until Jc is exceeded and flux-flow resistance occurs.


Sign in / Sign up

Export Citation Format

Share Document