Switching field time dependence of thin film media

2000 ◽  
Vol 36 (5) ◽  
pp. 2477-2479 ◽  
Author(s):  
M.L. Mallary ◽  
A.F. Torabi ◽  
R. Beauregard
2012 ◽  
Vol 132 (10) ◽  
pp. 838-843 ◽  
Author(s):  
Nobuaki Kikuchi ◽  
Yoshihiro Suyama ◽  
Satoshi Okamoto ◽  
Osamu Kitakami

2008 ◽  
Vol 104 (8) ◽  
pp. 083907 ◽  
Author(s):  
K. X. Xie ◽  
W. W. Lin ◽  
H. C. Sun ◽  
Y. Nie ◽  
H. Sang

2005 ◽  
Vol 902 ◽  
Author(s):  
Sushil Kumar Singh ◽  
Hiroshi Ishiwara

AbstractMn-doped Bi3.25La0.75Ti3O12 (BLT) thin films were fabricated by depositing sol-gel solutions on Pt/Ti/SiO2/Si <100> substrates. The surface morphology and ferroelectric properties of Mn-doped BLT films depend upon the orientation of the films. Small amount of Mn-doping in BLT films influences the ferroelectric properties of the films, that is, it enhances the remanent polarization and reduces the coercive field. The 1% Mn-doped BLT films show enhanced remanent polarization and reduced the coercive field by about 22%. To the contrary, Mn-doping more than 1% decreases polarization gradually. Mn-doping significantly improves the fatigue resistance of BLT films. The reduced polarization in the 3.3% Mn-doped thin film recovers during switching cycles higher than 5 × 105. Under high switching field, the probability of field-assisted unpinning of domains is expected to be high and this may be the main cause for increase in polarization after 5 × 105 in the 3.3% Mn-doped BLT film.


2021 ◽  
Vol 7 (3) ◽  
pp. 36
Author(s):  
Yu Shiratsuchi ◽  
Yiran Tao ◽  
Kentaro Toyoki ◽  
Ryoichi Nakatani

Magnetoelectric (ME) effect is a result of the interplay between magnetism and electric field and now, it is regarded as a principle that can be applied to the technique of controlling the antiferromagnetic (AFM) domain state. The ME-controlled AFM domain state can be read out by the magnetization of the adjacent ferromagnetic layer coupled with the ME AFM layer via exchange bias. In this technique, the reduction in the ME layer thickness is an ongoing challenge. In this paper, we demonstrate the ME-induced switching of exchange bias polarity using the 30-nm thick ME Cr2O3 thin film. Two typical switching processes, the ME field cooling (MEFC) and isothermal modes, are both explored. The required ME field for the switching in the MEFC mode suggests that the ME susceptibility (α33) is not deteriorated at 30 nm thickness regime. The isothermal change of the exchange bias shows the hysteresis with respect to the electric field, and there is an asymmetry of the switching field depending on the switching direction. The quantitative analysis of this asymmetry yields α33 at 273 K of 3.7 ± 0.5 ps/m, which is comparable to the reported value for the bulk Cr2O3.


Sign in / Sign up

Export Citation Format

Share Document