Digital reconstruction of three-dimensional serially sectioned optical images

1988 ◽  
Vol 36 (7) ◽  
pp. 1067-1075 ◽  
Author(s):  
F. Macias-Garza ◽  
A.C. Bovik ◽  
K.R. Diller ◽  
S.J. Aggarwal ◽  
J.K. Aggarwal
2021 ◽  
Author(s):  
Sven Gastauer ◽  
Jeffrey S. Ellen ◽  
Mark D. Ohman

<p><em>Zooglider</em> is an autonomous buoyancy-driven ocean glider designed and built by the Instrument Development Group at Scripps. <em>Zooglider</em> includes a low power camera with a telecentric lens for shadowgraph imaging and two custom active acoustics echosounders (operated at 200/1000 kHz).  A passive acoustic hydrophone records vocalizations from marine mammals, fishes, and ambient noise.  The imaging system (<em>Zoocam</em>) quantifies zooplankton and ‘marine snow’ as they flow through a sampling tunnel within a well-defined sampling volume. Other sensors include a pumped Conductivity-Temperature-Depth probe and Chl-<em>a</em> fluorometer.  An acoustic altimeter permits autonomous navigation across regions of abrupt seafloor topography, including submarine canyons and seamounts.  Vertical sampling resolution is typically 5 cm, maximum operating depth is ~500 m, and mission duration up to 50 days.  Adaptive sampling is enabled by telemetry of measurements at each surfacing.  Our post-deployment processing methodology classifies the optical images using advanced Deep Learning methods that utilize context metadata.  <em>Zooglider</em> permits in situ measurements of mesozooplankton and marine snow - and their natural, three dimensional orientation - in relation to other biotic and physical properties of the ocean water column.  <em>Zooglider</em> resolves micro-scale patches, which are important for predator-prey interactions and biogeochemical cycling. </p><p> </p>


Author(s):  
Roberta Spallone

The digital reconstruction of architectural and urban complexes which were demolished, transformed or have been only theoretically conceived, remaining 'on paper', is now a tool of considerable heuristic value, allowing to preserve, interpret and create new images of cultural heritages that no longer exist in their original shape or never reached a material construction. The tools, methods and techniques of representation (graphical analysis, two and three-dimensional modeling, animation, prototyping) should be carefully chosen, case by case, in order to interpret properly the basic data and create original interpretations, using as research sources and ideas not only the archival drawings and any surviving vestiges, but also the autograph writings and the more inspired analysis developed by the architecture critics. The examination of several international case studies, and also some experiences personally conducted highlights the different strategies used for the preservation of the memory of such heritage.


2017 ◽  
Vol 270 (2) ◽  
pp. 170-175 ◽  
Author(s):  
P. LIU ◽  
J.-Y. ZHU ◽  
B. TANG ◽  
Z.-C. HU

2021 ◽  
Vol 12 (25) ◽  
pp. 124
Author(s):  
Simone Fallica ◽  
Raissa Garozzo ◽  
Cettina Santagati

<p class="VARAbstract">This paper addresses the challenge of digitally reconstructing ruined architectural sites and retracing their history, in order to virtually recompose their geometrical, stylistic and material integrity. To this end, the research team analyzed the ruins of the church of Santa Maria de Monasterio Albo, located in the ancient village of Misterbianco (Sicily) and destroyed (together with the entire hamlet) by the 1669 eruption of Mount Etna. In the last years, some excavation campaigns brought the church to the light, unveiling the remains of the main portal and six altars, which are one of the most remarkable examples of Mannerist art in eastern Sicily. This research aimed to three-dimensional (3D) reconstruct both the altars and the portal, ideally reviving their original 17<sup>th</sup> century configuration. This goal was achieved through an in-depth archival research (documents dating back to the years between 1300 and 1666 were consulted), an analysis of Classic and Renaissance treatises, and two integrated digital survey campaigns (laser scans and photogrammetry). The outcome is represented by the 3D models of the seven artifacts, which include surviving parts reconstructed as photogrammetric meshes, several fragments were placed in their likely early location through a virtual anastylosis, and NURBS (Non Uniform Rational Basis-Splines) surfaces (recreating the no longer existing elements). The latter were 3D modelled based on the treatises (which provided information on the correct proportioning) or in analogy with other coeval similar artifacts. Overall, the digital reconstruction was based on the ethical principles of transparency of the intervention, recognition of non-original additions and distinction between evidence and hypothesis, according to the London Charter and the Seville Principles. The experimentation provides a valid support for possible interventions in the real world and is the starting point to develop a digital archive of the site, which would make the different accuracy levels the reconstruction explicit.</p><p><strong>Highlights:</strong></p><ul><li><p>3D virtual reconstruction is effective to visualize and bring back to life ruined architectural artefacts.</p></li><li><p>Information about the artefacts original appearance was harvested through digital survey campaigns, archival documents, and comparisons with iconographic sources and coeval buildings.</p></li><li><p>The 3D reconstruction follows ethical principles of transparency and combines photogrammetric meshes (partly relocated through a virtual anastylosis) and NURBS surfaces.</p></li></ul>


2021 ◽  
Vol 9 (11) ◽  
pp. 1255
Author(s):  
Panagiotis Gkionis ◽  
George Papatheodorou ◽  
Maria Geraga

Through the study of three wreck sites over the Methoni Bay (Greece), this article presents the benefits of spatio-temporal integration and correlation of marine geophysical data in a common three-dimensional (3D) geographical platform for analysis, and visualisation of shipwreck ruins and for interpretation of physical processes over wreck sites. The integration of 3D datasets has been proven to support identification of archaeological features over and under the seafloor, evaluation of the wreck structure state, and assessment on the wrecking event and the wreck site arrangement at that time, due to interactive cross-examination of datasets acquired in separate planes. Data synthesis is fundamental for 3D digital reconstruction of scattered and partially buried shipwreck ruins in complex geology as every dataset acts as interpretive and complimentary to each other. It is also shown that data synthesis highlights the signatures of physical processes over the wreck sites, and the interaction between the processes and the shipwrecks. The analysis of spatio-temporal, four-dimensional (4D) integrated datasets has proved to provide knowledge on the wreck site evolution through time, and highlights the disturbance of underwater archaeological resources due to human activities. The study has also shown that the creation of a shoalest depth true position bathymetric surface supports the realistic 3D wreck representation over the seafloor.


2020 ◽  
Vol 11 (22) ◽  
pp. 1 ◽  
Author(s):  
Leonarda Fazio ◽  
Mauro Lo Brutto

<p class="VARKeywords">In recent years, the use of three-dimensional (3D) models in cultural and archaeological heritage for documentation and dissemination purposes has increased. New geomatics technologies have significantly reduced the time spent on fieldwork surveys and data processing. The archaeological remains can be documented and reconstructed in a digital 3D environment thanks to the new 3D survey technologies. Furthermore, the products generated by modern surveying technologies can be reconstructed in a virtual environment on effective archaeological bases and hypotheses coming from a detailed 3D data analysis. However, the choice of technologies that should be used to get the best results for different archaeological remains and how to use 3D models to improve knowledge and dissemination to a wider audience are open questions.</p><p class="VARKeywords">This paper deals with the use of terrestrial laser scanners and photogrammetric surveys for the virtual reconstruction of an archaeological site. In particular, the work describes the study for the 3D documentation and virtual reconstruction of the “Sanctuary of Isis” in <em>Lilybaeum,</em> the ancient city of Marsala (southern Italy). The "Sanctuary of Isis" is the only Roman sacred building known in this archaeological area. Based on the survey data, it has been possible to recreate the original volumes of the ancient building and rebuild the two best-preserved floors –a geometric mosaic and an <em>opus spicatum</em>– for a first digital reconstruction of the archaeological complex in a 3D environment.</p>


Sign in / Sign up

Export Citation Format

Share Document