Dependence of timing jitter on bias level for single-mode semiconductor lasers under high speed operations

1993 ◽  
Vol 29 (1) ◽  
pp. 23-32 ◽  
Author(s):  
C.R. Mirasso ◽  
P. Colet ◽  
M. San Miguel
2020 ◽  
Vol 11 (1) ◽  
pp. 221
Author(s):  
Qichao Wang ◽  
Jian Wang ◽  
Changzheng Sun ◽  
Bing Xiong ◽  
Yi Luo ◽  
...  

Low-cost and high-speed single-mode semiconductor lasers are increasingly required as wide-band access fiber communication expands in recent years. Here, a high-speed laterally coupled distributed feedback (LC-DFB) laser array is achieved based on a SiO2 planarization process. The device exhibits low threshold currents of about 12 mA and high slope efficiencies over 0.26 W/A. Stable single mode operation and high-speed performance are realized with side mode suppression ratios (SMSR) over 45 dB, and 3-dBe bandwidths exceed 14 GHz for all four channels. Such a high-speed and process simple LC-DFB laser array shows great potential to the low-cost fiber communication networks.


1993 ◽  
Vol 140 (4) ◽  
pp. 237 ◽  
Author(s):  
A. Valle ◽  
P. Colet ◽  
L. Pesquera ◽  
M.San Miguel

1986 ◽  
Vol 22 (7) ◽  
pp. 396 ◽  
Author(s):  
J.M. Wiesenfeld ◽  
R.S. Tucker ◽  
P.M. Downey ◽  
J.E. Bowers

2014 ◽  
Vol 988 ◽  
pp. 544-547
Author(s):  
Guang Li

A novel high speed and ultra long-haul radio-over-fiber (ROF) system based on Dual Photoelectric Arms Coherent Modulation (DPACM) and Optical Duo-Binary Coding (ODBC) is proposed, and demonstrated. The signal spectrum bandwidth, generated by ODBC based on the first order DPACM, is half of non-return-to-zero (NRZ ) signal spectrum bandwidth. The secondary order DPACM generates a 40-GHz Millimeter-wave (mm-wave) that is transmitted over fiber (ROF). The simulation results show that, the bit rate can be up to 40 Gbps and the transmission distance is over 1500 Km, based on the ROF system with a 0 dBm continuous-wave laser source, multiple stages Er-Doped Fiber Amplifier (EDFA), a standard single mode fiber (SSMF) with a dispersion of 17 ps/nm/Km and a attenuation of 0.2 dB/Km.


AIP Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 015325
Author(s):  
Yuhong Zhou ◽  
Junqi Liu ◽  
Shenqiang Zhai ◽  
Ning Zhuo ◽  
Jinchuan Zhang ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 4015
Author(s):  
Peter Hellwig ◽  
Klaus Schricker ◽  
Jean Pierre Bergmann

High processing speeds enormously enlarge the number of possible fields of application for laser processes. For example, material removal for sheet cutting using multiple passes or precise mass corrections can be achieved by means of spatter formation. For a better understanding of spatter formation at processing speeds of several hundred meters per minute, characterizations of the processing zone are required. For this purpose, a 400 W single-mode fiber laser was used in this study to process stainless steel AISI 304 (1.4301/X5CrNi18-10) with speeds of up to 600 m/min. A setup was developed that enabled a lateral high-speed observation of the processing zone by means of a glass plate flanking. This approach allowed for the measurement of several dimensions, such as the penetration depth, spatter formation, and especially, the inclination angle of the absorption front. It was shown that the loss of mass started to significantly increase when the absorption front was inclined at about 60°. In combination with precise weighings, metallographic examinations, and further external process observations, these findings provided an illustration of four empirical process models for different processing speeds.


Sign in / Sign up

Export Citation Format

Share Document