Testing and debugging distributed programs using global predicates

1995 ◽  
Vol 21 (2) ◽  
pp. 163-177 ◽  
Author(s):  
S. Venkatesan ◽  
B. Dathan
2018 ◽  
Author(s):  
Tuba Kiyan ◽  
Heiko Lohrke ◽  
Christian Boit

Abstract This paper compares the three major semi-invasive optical approaches, Photon Emission (PE), Thermal Laser Stimulation (TLS) and Electro-Optical Frequency Mapping (EOFM) for contactless static random access memory (SRAM) content read-out on a commercial microcontroller. Advantages and disadvantages of these techniques are evaluated by applying those techniques on a 1 KB SRAM in an MSP430 microcontroller. It is demonstrated that successful read out depends strongly on the core voltage parameters for each technique. For PE, better SNR and shorter integration time are to be achieved by using the highest nominal core voltage. In TLS measurements, the core voltage needs to be externally applied via a current amplifier with a bias voltage slightly above nominal. EOFM can use nominal core voltages again; however, a modulation needs to be applied. The amplitude of the modulated supply voltage signal has a strong effect on the quality of the signal. Semi-invasive read out of the memory content is necessary in order to remotely understand the organization of memory, which finds applications in hardware and software security evaluation, reverse engineering, defect localization, failure analysis, chip testing and debugging.


2011 ◽  
Author(s):  
William R. Marczak ◽  
Peter Alvaro ◽  
Neil Conway ◽  
Joseph M. Hellerstein ◽  
David Maier

2006 ◽  
Vol 4 ◽  
pp. 288-305
Author(s):  
A.B. Migranov

The article deals with the issues related to the construction of microelectromechanical systems (MEMS), and the problems arising from their manufacture. Particular attention is paid to micromechanical parts of robot, which were developed by methods of semi-simulation using the virtual environment for designing, testing and debugging MEMS.


1989 ◽  
Vol 32 (9) ◽  
pp. 1079-1084 ◽  
Author(s):  
Wan-Hong S. Cheng ◽  
Virgil E. Wallentine

SIMULATION ◽  
2021 ◽  
pp. 003754972199601
Author(s):  
Jinchao Chen ◽  
Keke Chen ◽  
Chenglie Du ◽  
Yifan Liu

The ARINC 653 operation system is currently widely adopted in the avionics industry, and has become the mainstream architecture in avionics applications because of its strong agility and reliability. Although ARINC 653 can efficiently reduce the weight and energy consumption, it results in a serious development and verification problem for avionics systems. As ARINC 653 is non-open source software and lacks effective support for software testing and debugging, it is of great significance to build a real-time simulation platform for ARINC 653 on general-purpose operating systems, improving the efficiency and effectiveness of system development and implementation. In this paper, a virtual ARINC 653 platform is designed and realized by using real-time simulation technology. The proposed platform is composed of partition management, communication management, and health monitoring management, provides the same operation interfaces as the ARINC 653 system, and allows dynamic debugging of avionics applications without requiring the actual presence of real devices. Experimental results show that the platform not only simulates the functionalities of ARINC 653, but also meets the real-time requirements of avionics applications.


Sign in / Sign up

Export Citation Format

Share Document