Dynamic chip formation of ultrasonic-assisted micro-drilling on AISI 4340 steel

Author(s):  
Guangjun Chen ◽  
Jinkai Xu ◽  
Jingdong Wang ◽  
Jiaqi Wang ◽  
Huadong Yu
Author(s):  
S Belhadi ◽  
T Mabrouki ◽  
J-F Rigal ◽  
L Boulanouar

The present paper is a contribution to the investigation of physical phenomena accompanying sawtooth chip formation in the case of hard turning. The study concerns the machining with coated carbide of tempered AISI 4340 steel with a Rockwell C hardness of 47 HRC. The main idea in this paper deals with the establishment of a direct relationship between serrated-chip morphology simultaneously with force component signals derived from acquisition at high frequency and with the width of facets detected on a workpiece machined surface. This experimental work was supported by a numerical simulation based on Abaqus/ Explicit software. Numerical results dealing with effect of temperature evolution on the chip morphology show that the beginning of the sawtooth chip initiation is due to an adiabatic shear at the tool tip with propagation pathway towards the free surface. In addition, computed results have a good corroboration with those obtained experimentally.


1982 ◽  
Vol 104 (2) ◽  
pp. 121-131 ◽  
Author(s):  
R. Komanduri ◽  
T. Schroeder ◽  
J. Hazra ◽  
B. F. von Turkovich ◽  
D. G. Flom

An AISI 4340 Steel (325 BHN) was machined at various speeds up to 2500 m/min (8000 SFPM). Longitudinal midsections of the chips were examined metallurgically to delineate the differences in the chip formation characteristics at various speeds. Chips were found to be continuous at 30 to 60 m/min (100 to 200 SFPM) but discontinuous below this speed. Instabilities in the cutting process, leading to different types of cyclic chip formations, were observed at cutting speeds above 60 m/min (200 SFPM). Fully developed catastrophic shear bands separated by large areas (segments) of relatively less deformed material, similar to that when machining titanium alloys, were observed in the chips at cutting speeds above 275 m/min (800 SFPM). The intense shear bands between the segments appeared to have formed subsequent to the localized intense deformation of the segment in the primary shear zone. As the cutting speed increases, the extent of contact between the segments is found to decrease rapidly. At speeds of 1000 m/min (3200 SFPM) and above, due to rapid intense, localized shear between the segments, these segments were found to separate completely as isolated segments instead of being held intact as a long chip. The speed at which this decohesion occurs was found to depend upon the metallurgical state of the steel machined and its hardness. As in the case of machining titanium alloys, the deformation of the chip as it slides on the tool face, i.e., “secondary shear zone,” appeared to be negligible when machining this AISI 4340 steel at high speed. Based on the metallurgical study of the chip and the similarities of machining this material at high speed and that of titanium alloys at normal speed, a cyclic phenomenon in the primary shear zone is identified as the source of instability responsible for the large-scale heterogeneity and a mechanism of chip formation when machining AISI 4340 steel at high speed is proposed.


2017 ◽  
Vol 31 (2) ◽  
pp. 17 ◽  
Author(s):  
Sirsendu Mahata ◽  
Ankesh Samanta ◽  
Joydip Roy ◽  
Bijoy Mandal ◽  
Santanu Das

CORROSION ◽  
1969 ◽  
Vol 25 (8) ◽  
pp. 342-344 ◽  
Author(s):  
A. TIRMAN ◽  
E. G. HANEY ◽  
PAUL FUGASSI

Abstract The resistance to stress corrosion cracking of AISI 4340 steel foil in 0.6M aqueous sodium chloride, acidified to pH 1.5 with hydrochloric acid, is greatly decreased by prior treatment of the specimens for short periods of time with aqueous and nonaqueous solutions of sulfur, organic and inorganic sulfides, sulfur dioxides, and the inorganic salts of sulfurousand sulfuric acids. It is suggested that this prior treatment produces sulfided areas which are inhibitors of the combination of atomic hydrogen into molecular hydrogen. The decreased resistance to stress corrosion cracking is thus attributed to hydrogen embrittlement. If the stress corrosion cracking test is made in 0.6M aqueous sodium chloride, adjusted to an initial pH of 8, the effect of a prior sulfiding treatment is small. The formation of such sulfided areas in practice result from the exposure of 4340 steels to industrial atmospheres which may contain hydrogen sulfide, sulfur dioxide, and elemental sulfur.


Sign in / Sign up

Export Citation Format

Share Document