Blind adaptive spatial-temporal equalization algorithms for wireless communications using antenna arrays

1997 ◽  
Vol 1 (1) ◽  
pp. 25-27 ◽  
Author(s):  
Ye Li ◽  
K.J. Ray Liu
2014 ◽  
Vol 13 (7) ◽  
pp. 3791-3805 ◽  
Author(s):  
Peng Wang ◽  
Yonghui Li ◽  
Xiaojun Yuan ◽  
Lingyang Song ◽  
Branka Vucetic

2018 ◽  
Vol 12 (4) ◽  
pp. 383-389 ◽  
Author(s):  
Zukun Lu ◽  
Huaming Chen ◽  
Feiqiang Chen ◽  
Junwei Nie ◽  
Gang Ou

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
G. Federico ◽  
D. Caratelli ◽  
G. Theis ◽  
A. B. Smolders

With the introduction of 5G communication systems operating in the mm-wave frequency range, new opportunities in terms of multimedia services and applications will become available. For this to happen, several technical challenges from an antenna standpoint need to be addressed. The achievements of high-gain characteristics and agile beamforming with wide-scan capabilities are the main targets of the ongoing research on mm-wave antenna arrays. In this paper, an up-to-date overview of antenna array technology for wireless communications at mm-wave frequencies is given. Particular focus is put on the review of the state-of-the art and most advanced antenna array concepts for point-to-point and point-to-multipoint radio links at said frequencies. Various figures of merit are assessed for a comprehensive analysis and bench marking of the technical solutions investigated in the presented survey.


Doklady BGUIR ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 11-20
Author(s):  
V. P. Tuzlukov

In this paper, two different receiver structures to multiuser detection that are appropriate for the code-division multiple-access systems with antenna arrays in fading channels are investigated and compared. We analyze and compare the performance of the two different multiuser detection structures for uplink or downlink channels. The number of elements of receiving antenna array may be limited in the downlink channel due to the small size of receivers. We assume a synchronous system, but it can be easily extended to an asynchronous system. The first approach is based on the distributed decorrelator where the signal decorrelation is performed by each receiving antenna element independently and decorrelated outputs are combined according to the maximum ratio. The second approach is the central decorrelator where the signal decorrelation is performed once collectively on the outputs from all elements of receiving antenna array. Both decorrelators provide the same performance in the additive white Gaussian noise channels. The distributed decorrelator provides the better performance in flat fading channels. We employ the decorrelator to demonstrate our results. The results discussed in the present paper can be extended to other configurations such as the blind adaptive space-time multiuser detection.


Sign in / Sign up

Export Citation Format

Share Document