An adaptive sampling-interval generator for digital relaying

1989 ◽  
Vol 4 (3) ◽  
pp. 1602-1609 ◽  
Author(s):  
G. Benmouyal
Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 981 ◽  
Author(s):  
Qinghua Han ◽  
Minghai Pan ◽  
Weijun Long ◽  
Zhiheng Liang ◽  
Chenggang Shan

In this paper, a joint adaptive sampling interval and power allocation (JASIPA) scheme based on chance-constraint programming (CCP) is proposed for maneuvering target tracking (MTT) in a multiple opportunistic array radar (OAR) system. In order to conveniently predict the maneuvering target state of the next sampling instant, the best-fitting Gaussian (BFG) approximation is introduced and used to replace the multimodal prior target probability density function (PDF) at each time step. Since the mean and covariance of the BFG approximation can be computed by a recursive formula, we can utilize an existing Riccati-like recursion to accomplish effective resource allocation. The prior Cramér-Rao lower boundary (prior CRLB-like) is compared with the upper boundary of the desired tracking error range to determine the adaptive sampling interval, and the Bayesian CRLB-like (BCRLB-like) gives a criterion used for measuring power allocation. In addition, considering the randomness of target radar cross section (RCS), we adopt the CCP to package the deterministic resource management model, which minimizes the total transmitted power by effective resource allocation. Lastly, the stochastic simulation is embedded into a genetic algorithm (GA) to produce a hybrid intelligent optimization algorithm (HIOA) to solve the CCP optimization problem. Simulation results show that the global performance of the radar system can be improved effectively by the resource allocation scheme.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Huadeng Wang ◽  
Guang Xu ◽  
Xipeng Pan ◽  
Zhenbing Liu ◽  
Rushi Lan ◽  
...  

Ray-casting algorithm is an important volume rendering algorithm, which is widely used in medical image processing. Aiming to address the shortcomings of the current ray-casting algorithms in 3D reconstruction of medical images, such as slow rendering speed and low sampling efficiency, an improved algorithm based on dynamic adaptive sampling is proposed. By using the central difference gradient method, the corresponding sampling interval is obtained dynamically according to the different sampling points. Meanwhile, a new rendering operator is proposed based on the color value and opacity changes before and after the ray enters the volume element, and the resistance luminosity. Compared with the state of other algorithms, experimental results show that the method proposed in this paper has a faster rendering speed while ensuring the quality of the generated image.


2020 ◽  
Vol 10 (3) ◽  
pp. 1-7
Author(s):  
Ryszard Golański ◽  
Juliusz Godek

The results of analytic and simulating works proved that for nonstationary sources, the delta converters with adaptive sampling expose higher coding efficiency than the former proposals, based on uniform sampling methods. The knowledge of the sampling interval range and the algorithm of the Nonuniform Sampling Delta Modulation and Adaptive Nonuniform Sampling Delta Modulation allows finding the necessary number of the sampling intervals and their values that maximizes SNR. The total dynamic range of the ANSDM modulator is the product of the dynamic range both from sampling interval and step size adaptation. Due to the high complexity of the calculations, the ANSDMsoft program was developed to support computing. All computational works were carried out using the Maple environment. Maple allows to solve complex mathematical functions and display their results in a simple way. Most importantly, it supports the LambertW function, used in the computing of NSDM or ANSDM modulators parameters. Graphic illustrations of the NSDM and ANSDM modulator dynamic range as a function of the minimum and maximum sampling frequency are presented.


2009 ◽  
Vol 26 (3) ◽  
pp. 492-507 ◽  
Author(s):  
Jessica L. Proud ◽  
Kelvin K. Droegemeier ◽  
Vincent T. Wood ◽  
Rodger A. Brown

Abstract Increasing tornado and severe storm warning lead time (lead time is defined here as the elapsed time between the issuance of a watch or warning and the time at which the anticipated weather event first impacts the specified region) through the use of radar observations has long been a challenge for researchers and operational forecasters. To improve lead time and the probability of detecting tornadoes while decreasing the false alarm ratio, a greater understanding, obtained in part by more complete observations, is needed about the region of storms within which tornadoes form and persist. Driven in large part by this need, but also by the goal of using numerical models to explicitly predict intense local weather such as thunderstorms, the National Science Foundation established, in fall 2003, the Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). CASA is developing a revolutionary new paradigm of using a network of small, closely spaced, inexpensive, low-power dual-polarization Doppler weather radars to overcome the inability of widely spaced, high-power radars to sample large regions of the lower atmosphere owing to the curvature of earth given that zero or negative beam elevation angles are not allowed. Also, current radar technology operates mostly independently of the weather and end-user needs, thus producing valuable information on storms as a whole but not focused on any specific phenomenon or need. Conversely, CASA utilizes a dynamically adaptive sensing paradigm to identify, and optimally sample, multiple targets based upon their observed characteristics in order to meet a variety of often competing end-user needs. The goal of this study is to evaluate a variety of adaptive sampling strategies for CASA radars to assess their effectiveness in identifying intense low-altitude vortices. Such identification, for the purposes of this study, is defined as achieving a best fit of simulated observations to an analytic model of a tornado or mesocyclone. Several parameters are varied in this study including the size of the vortex, azimuthal sampling interval, distance of the vortex from the radar, and radar beamwidth. Results show that, in the case of small vortices, adaptively decreasing the azimuthal sampling interval (i.e., overlapping beams) is beneficial in comparison to conventional azimuthal sampling that is approximately equal to the beamwidth. However, the benefit is limited to factors of 2 in overlapping. When simulating the performance of a CASA radar in comparison to that of a Weather Surveillance Radar-1988 Doppler (WSR-88D) at close range, with both operating in the conventional nonoverlapping mode, the WSR-88D (with a beamwidth about half that of a CASA radar) performs better. However, when overlapping is applied to the CASA radar, for which little additional processing time is required, the results are comparable. In effect, the sampling resolution of a radar can be increased simply by decreasing the azimuthal sampling interval as opposed to installing a larger antenna.


Sign in / Sign up

Export Citation Format

Share Document