DC harmonic distortion minimization of thyristor converters under unbalanced voltage supply using asymmetrical firing angle

1997 ◽  
Vol 12 (2) ◽  
pp. 332-342 ◽  
Author(s):  
E. Ngandui ◽  
G. Olivier ◽  
G.-E. April ◽  
C. Guimaraes
2021 ◽  
Vol 11 (11) ◽  
pp. 5076
Author(s):  
Hongyan Zhao ◽  
Yan Li ◽  
Fei Lin ◽  
Yian Yan

The balance control of neutral-point voltage (NPV) is important in the three-level converter. In this paper, this problem is studied by taking the VIENNA circuit as an example. The deviation of NPV is essentially caused by mismatch between the charging and discharging time of two series capacitors by the neutral-point current flowing into or out of the DC side. The unbalanced NPV will lead to unbalanced voltage stress of two capacitors and power switches and may cause overvoltage damage to both and also increase the total harmonic distortion (THD) and harmonic components in the AC current. In this paper, by analyzing the role and effect of a small-voltage vector on NPV, a control strategy based on the selection method of dynamical adjustment for a small vector is proposed. By judging the fluctuation of NPV, different small vectors are dynamically selected to act to adjust the NPV. For verification, the proposed strategy is compared with the traditional zero-sequence voltage injection (ZSV-J) method through simulation and experiment. Compared with ZSV-J, the THD of AC current is decreased by about 27.2%, the efficiency is increased by about 1.66%, and the adjustment speed of NPV is increased by about 50%. Therefore, the feasibility and advantages of the strategy are verified.


Author(s):  
Zoubir Zeghdi ◽  
Linda Barazane ◽  
Youcef Bekakra ◽  
Abdelkader Larabi

In this paper, an improved Backstepping control based on a recent optimization method called Ant Lion Optimizer (ALO) algorithm for a Doubly Fed Induction Generator (DFIG) driven by a wind turbine is designed and presented. ALO algorithm is applied for obtaining optimum Backstepping control (BCS) parameters that are able to make the drive more robust with a faster dynamic response, higher accuracy and steady performance. The fitness function of the ALO algorithm to be minimized is designed using some indexes criterion like Integral Time Absolute Error (ITAE) and Integral Time Square Error (ITSE). Simulation tests are carried out in MATLAB/Simulink environment to validate the effectiveness of the proposed BCS-ALO and compared to the conventional BCS control. The results prove that the objectives of this paper were accomplished in terms of robustness, better dynamic efficiency, reduced harmonic distortion, minimization of stator powers ripples and performing well in solving the problem of uncertainty of the model parameter.


Sign in / Sign up

Export Citation Format

Share Document