Simultaneous total harmonic distortion minimization and selective harmonic elimination: Combining the best of both worlds

Author(s):  
Kenessary Koishybay ◽  
Tohid Alizadeh ◽  
Yakov L. Familiant ◽  
Alex Ruderman
2019 ◽  
Vol 8 (2) ◽  
pp. 405-413 ◽  
Author(s):  
Ezzidin Hassan Aboadla ◽  
Sheroz Khan ◽  
Mohamed H. Habaebi ◽  
Teddy Surya Gunawan ◽  
Belal A. Hamida ◽  
...  

The main goal of utilizing Selective Harmonic Elimination (SHE) techniques in Multilevel Inverters (MLI) is to produce a high-quality output voltage signal with a minimum Total Harmonic Distortion (THD). By calculating N switching angles, SHE technique can eliminate (N-1) low order odd harmonics of the output voltage waveform. To optimized and obtained these switching angles, N of nonlinear equations should be solved using a numerical method. Modulation index (m) and duty cycle play a big role in selective harmonic elimination technique to obtain a minimum harmonic distortion and desired fundamental component voltage. In this paper, a novel Optimization Harmonic Elimination Technique (OHET) based on SHE scheme is proposed to re-mitigate Total Harmonic Distortion. The performance of seven-level H-bridge cascade inverter is evaluated using PSIM and validated experimentally by developing a purposely built microcontroller-based printed circuit board.


Author(s):  
K Venkateswara Rao ◽  
◽  
G Joga Rao ◽  

Cascaded structured multilevel inverters are gaining lot of importance due to their simple structure and easiness in implementation. In this paper, the optimum selective harmonic elimination method is employed for a nine level inverter to suppress the selected lower order harmonic, which reduces the total harmonic distortion of the inverter considerably. The Newton rapson algorithm is employed in finding the switching angles that minimizes certain lower order harmonics. The order of the harmonics that are eliminated are third, fifth, and seventh harmonics. All the simulation results included for a nine level inverter using SIMULINK. Index Terms: Nine level MLI, Control of inverter, Modular Inverter.


2014 ◽  
Vol 63 (2) ◽  
pp. 187-196
Author(s):  
R. Kavitha ◽  
Rani Thottungal

Abstract Harmonic minimisation in hybrid cascaded multilevel inverter involves complex nonlinear transcendental equation with multiple solutions. Hybrid cascaded multilevel can be implemented using reduced switch count when compared to traditional cascaded multilevel inverter topology. In this paper Biogeographical Based Optimisation (BBO) technique is applied to Hybrid multilevel inverter to determine the optimum switching angles with weighted total harmonic distortion (WTHD) as the objective function. Optimisation based on WTHD combines the advantage of both OMTHD (Optimal Minimisation of Total Harmonic Distortion) and SHE (Selective Harmonic Elimination) PWM. WTHD optimisation has the benefit of eliminating the specific lower order harmonics as in SHEPWM and minimisation of THD as in OMTHD. The simulation and experimental results for a 7 level multilevel inverter were presented. The results indicate that WTHD optimization provides both elimination of lower order harmonics and minimisation of Total Harmonic Distortion when compared to conventional OMTHD and SHE PWM. Experimental prototype of a seven level hybrid cascaded multilevel inverter is implemented to verify the simulation results.


Author(s):  
Srikanta Kumar Dash ◽  
Byamakesh Nayak ◽  
Jiban Ballav Sahu

Reduction of total harmonic distortion in multilevel inverters is a difficult optimization problem that includes nonlinear transcendent equations having more than one local minima.This paper deals with the harmonic elimination of cascaded multilevel inverter with equal D.C. sources using a new optimization technique. The objective of this paper is to find the best combination of switching angles to minimize the lower order harmonics and the total harmonic distortion is reduced. For this purpose, a new optimization techniques i.e. whale optimization technique is considered.This algorithm is applied to an 11-level cascaded H-bridge inverter.Results shows that WOA gives better results and effectively minimizes the THD and lower order harmonics


Author(s):  
Hamed Hosseinnia ◽  
Murteza Farsadi

The voltage source inverter (VSI) and Current source inverter (CSI) are two types of traditional power inverter topologies.In this paper selective harmonic elimination (SHE) Algorithm was impelemented to CSI and results has been investigated. Cat swarm (CSO) optimization is a new meta-heuristic algorithm which has been used in order to tuning switching parameters in optimized value.Objective fuction is reduction of total harmonic distortion(THD) in inverters output currents.All of simulation has been carried out in Matlab/Software.


Author(s):  
T. Porselvi ◽  
K. Deepa ◽  
R. Muthu

Harmonic elimination at the fundamental frequency is very much appropriate for high and medium range of power generation and applications. This paper considers a new technique for selective harmonic elimination (SHE), in which the total harmonic distortion (THD) is minimized when compared with that of the conventional one. With this technique, the harmonics at lower order are eliminated, which are more predominant than the higher ones.Cascaded H-Bridge inverter fed by a single DC is considered which is simulated with the switching angles generated by both the conventional method of SHE and the new method of SHE. The simulated results of the load voltage and the waveforms of the harmonic analysis are shown. The THD values are compared for the two techniques.  The experimental results are also shown for the new technique. The switching angles are generated with the help of field programmable gated array (FPGA) in the hardware. The value of experimental THD of voltage is compared with that of simulated THD and the comparison prove that the results are satisfactory.


2021 ◽  
Vol 8 (5) ◽  
pp. 769-774
Author(s):  
Neerudi Bhoopal ◽  
Dokku Sivanaga Malleswara Rao ◽  
Bharath Kumar Narukullapati ◽  
Idamakanti Kasireddy ◽  
Devineni Gireesh Kumar

This paper proposed a new topology of a symmetric single-phase multilevel inverter with the smaller number of semiconductor switches and optimized low-frequency control methods to optimize the Total Harmonic Distortion. A nine-level single phase output is obtained by eight number of active semiconductor switches, four diodes and four capacitors from two asymmetrical dc sources. The selected harmonic order in the output voltage is eliminated by the PWM (SHE-PWM) based on selective harmonic elimination. To optimize the switching angles, an ant colony optimization is introduced. The proposed SHE-PWM and ant optimization are implemented and tested for THD on the SIMULINK platform. The proposed approach offers less THD and is best suited to high-power applications with medium voltage.


Sign in / Sign up

Export Citation Format

Share Document